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Preface

This book provides an overview of numerical field computational
methods. Particular attention is paid to the finite element method (FEM)
for the design of electrical machines and other magnetic devices.

It is based on the authors’ experience in teaching numerical
techniques to undergraduates, graduvates and doctoral students in courses
at their own and at various international universities, e.g. guest courses at
COPPE Universidade Federal do Rio de Janeiro (Brazil), Université de
Batna (Algeria) and the RWTH Aachen (Germany). The numerical
techniques are introduced to engineers from industry in an annual Shor?
Course in Magnetics organised at the Katholieke Universiteit Leuven.

This book is intended to be the basic reading material for such
courses on numerical field computations as given nowadays at the
Electrical Energy division in the Electrical Engineering Department of
the Katholieke Universiteit Leuven and as guest courses at other
universities,

The book describes the theory and techniques of modelling and
simulating electromagnetic devices. While its primary focus is on the
techniques applicable to the modelling of electrical machines and the
electromechanical energy transducers, it also illustrates the usefulness of
knowing the physical background of the specific problems. Accordingly,
the right problem definitions can be applied and computed results can be
interpreted and verified in a proper way.

Particular attention is paid to the FEM in designing electromagnetic
devices, such as motors, actuators and transformers. This means that only
frequencies below 10 kHz are considered. Several aspects of coupled
fields are discussed in sections where the physical problem urges
coupled solutions. The book has been written as a text book for
undergraduates, graduates and engineers in practice who want to learn
how to apply the fundamentals to solve electromagnetic design
problems. Selected examples to develop skills to define and solve a field
problem accurately are given at the end of this book. In parallel with the
text for this book, an in-house software package for two dimensional and



axisymmetrical FEM problems is developed to investigate the various
aspects of the numerical field computation and their usefulness.

Without the support of various people, this book would not appear
in this shape. In the first instance we should like to thank especially Dr.
U. Pahner for his contributions to the optimisation chapter. The texts
from section 7.3.1 to 7.3.3 are slightly adapted parts of his excellent
Ph.D. thesis.

The authors are pgrateful to all their Ph.D. students currently
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1 Introduction

An original design and the step by step optimisation of physical technical
devices is in practice often a trial and error process. During the design
and construction of a device several expensive prototypes have to be
built to monitor and check the mathematical approximations and the
physical reality. This procedure is time consuming and expensive.
Successful industrial developments demand shorter cycle times to fix or
improve the economical competition of particular companies. To
effectively compete in the market place nowadays, developed products of
higher quality, improved efficiency and better functionality are
recommended, leading to devices with very complex geometries.
Furthermore, custom designs are becoming very important. The added
value of standard massproduction devices is far lower. To solve the
techno-economical demands, the idea is to replace the expensive
prototyping by numerical simulations.

If an appropriate simulation model is found, various operating
points can be simulated on a computer. Even the behaviour of the device
for hazardous situations that cannot be measured inside a laboratory and
the use of arbitrary even future materials can be studied. The appropriate
choice of a calculation technique for an electromagnetic device is always
closely linked to the complexity of the problem.

To develop a technical product, parasitic effects such as:

e ferromagnetic saturation

¢ increased leakage flux

* high operating temperatures

* irreversible flux losses by using permanent magnet materials at

elevated temperatures

¢ coupling between different effects such as thermal-magnetic-

mechanical-flow field problems and

¢ induced currents due to motion effects
have to be considered in the calculations accounting for sufficient
accuracy. In devices with complex geometries, those effects can not be
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treated by a classical analytical approach. Results with a high accuracy
are required to predict the behaviour of the technical product. In this case
the simulation of the electromagnetic fields and their effects by
numerical models is suitable as an appropriate engineering tool. Using
computer models and the appropriate numerical algorithms solves the
physical problem. The numerical method has to fulfil specified demands
such as:

e reliability
robustness
application range
accuracy
performance.

To see where the numerical simulation finds its place in the analysis
of technical devices, Fig. 1.1 shows the links between the real technical
device, the classical physical theory and the numerical simulation. This
figure makes obvious that the numerical simulation is a connecting
element between reality, measurements, and theoretical predictions. As a
consequence, all numerical computations represent realistic activities in a
fictive laboratory. This means that simulation results should be
theoretically measurable in practice. The numerical simulation is in fact
an experiment performed on the computer as a fictitious laboratory,
where the engineer is using numerical tools to perform the experiments
instead of measurement devices such as current, voltage, power,
temperature and force meters.

computer almulation

comparison H comparison H
verificalion of the model verification of the model i
by simulation by theory !

ot

Fig. 1.1, Theory, experiment and simulation.
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The numerical simulation influences the analytical theory where
sometimes rough approximations or constants are used to consider
physical effects such as ferromagnetic saturation or hysteresis. The
verification of numerical solutions and results obtained by the analytical
theory can lead to improved analytical models and vice versa. Both
numerical simulation and analytical theory help to understand the
physical reality and to improve technical predictions.

1.1 Numerical solution process

In Fig. 1.2, the solution process for a system of partial differential
equations is outlined.

System of partial differential equations

| Choice of polentials, gauges, cuts l

| Choice of solution crilerion [

:

! Choice of discretisations, elemem

Fig. 1.2. Solution process for a system of partial differential equations.

The fields are described by differential equations. Assumptions
concerning boundary conditions, material properties such as isotropy,
dependencies in time, etc. have to be made before a computation of a
field can be performed. For example in magneto-static fields, the time
derivative is assumed to be zero and therefore no induced currents can be
considered.

The choice of the potentials is based on these simplifications. For
each problem type, the choice of an appropriate potential is different.
The choice of a gauge is necessary to obtain a regular system of
equations. Using the finite element method, the choice of the gauge also
determines the choice of the element type. However, the user of a CAD
program package that simulates magnetic, electric or thermal fields is
usually not involved in choosing for such basic numerical properties.

The numerical method to solve the partial differential equation is
understood as a solution criterion.
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The appropriate solution method depends on the type of equation,
such as parabolic, hyperbolic or elliptic.

For example, the choice of the elements for the finite element
method depends on the differential equation, the potential formulation,
and the solution method.

In a two-dimensional magnetostatic problem the unknowns are node
potentials. Here, the magnetic vector potential is chosen because the
nodal unknowns have only a single component A, In this two-

dimensional field problem, the Coulomb gauge is satisfied automatically.

The choice of method for solving a system of linear equations is
dependent of the differential problem and its formulation. For example
the magneto-static problem is an elliptic differential problem. The
Laplace operator is symmetrically adjoint and positive definite. A system
of equations with such properties can be solved by a conjugate gradient
method.

pre-processing ) To focus on the acti\"e parts
defiaition of geometry, et performed by an design engineer, in
L principle, field computation is

| mesh generation ] performed in three major steps: pre-

= E processing, processing and post-
= T ey ] processing. Fig. 1.3 shows a typical

{ modified
_ Newton-method

pattern for the FEM approach. The
’ S P first step consists of the definition of

—

SSOR-CG d

e rra— : the geometry of the electromagnetic

| estmaton | device. Material properties, electrical

prre o current densities and boundary
' mesh adapilon

| mene conditions are defined. All the
post-processing | activities have to be performed by the
design engineer. Therefore, the pre-
processing is time consuming. The
Fig. 1.3. Solution processes during ~ estimated time expenditure for a two-
a field computation session. dimensional problem is given in
Fig.1.3. The processing, ie. the
solution of a very large system of equations is automatically done in the
second step. Only parameters to control the solution process have to be
defined by the design engineer. In the last part of the FEM procedure, the
interesting field quantities are computed from the solution out of the
processing. If the geometrical data can be parameterised, the pre- and
post-processing can be automated as well. This represents an important
prerequisite for the possibility of the combination of field computation
and numerical optimisation.

L evalunilon J 30%




2 Computer aided design in magnetics

For designing and constructing electromagnetic devices an accurate
knowledge of the field quantities inside the magnetic circuit is necessary.
In many cases the air gap is of particular importance (e.g. motors,
switches, relays, contactors, actuators). Here the conversion from
electrical to mechanical energy and vice versa takes place. In the air gap
the field quantities such as flux density and field strength have to be
calculated very accurately in order to be able correctly to asses the
operational behaviour of the device.

Although Maxwell equations have been known for more than a
century, in the past the task in calculating a magnetic circuit was to find
as many assumptions and simplifications as possible. Then, results could
be obtained with rather low numerical efforts. Using this approach, only
devices or problems with a strongly simplified geometry could be
studied. It was a design following simple rules, found empirically.
Physical effects were considered by correction factors applied to the
existing rules. In the following period of time this design through rules
has changed into another design philosophy: design analysis. Here,
computer models were used to solve the field problem. Analysis means
the treatment of the field problem by numerical simulation.

With the ongoing developments in computer hard- and software and
numerical research, difficulties conceming computational costs and
numerical problems are continuously moving to the background. Today,
efficient numerical solutions can be obtained for a wide range of
problems beyond the scope of analytical methods. In particular the
limitations imposed by the analytical methods, their restrictions to
homogeneous, linear and steady state problems can be overcome using
numerical methods,

In general, the procedure for analysing an electromagnetic device
can be divided into three steps:

® pre-processing

¢ processing and
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input data:
: geo(mzi]y input data: input data:
Lna er(; e error bound e evaluation locality for
= Doy e max. iteration sleps diagrams, colour plots, ...
conditions

0 v

processing [ — processing | = | processing

i i }

e discretisalion e mesh adaplation e optimisation
* agpproximation » num. melhad « further modelling
¢ parametrisalion » equation solver = lumped parameter
e coupling: s approximation of local field
= fields quantilies
= geometry « field coupling
= circuits
=> molion
= methods

Fig. 2.1. Field analysis steps.

« the post-processing.

In the first step, the field problem is defined and prepared to be
solved. The second step delivers the numerical solution of the physical
problem. During the post-processing, the obtained solution is prepared to
calculate the required field quantities or to evaluate forces and other
macroscopic quantities. This threefold approach of defining, solving and
evaluating is typical for every analysis procedure, numerical or
analytical. The different techniques, data structures or algorithms used in
the individual steps, influence and/or limit the overall procedure during
the analysis of a field problem (Fig. 2.1).

To define a field problem, the input data describing the geometry of
the domain of interest, the material representation and the boundary
conditions are always required. Even with enhanced CAD drawing
techniques, most of the analysis time will have to be spent on the pre-
processing. Given error bounds will support a desired accuracy of the
solution. Often, the user can not influence this step. During the post-
processing, the solution must be prepared to study the Jocal field effects.
The post-processing represents an open-ended process, because the user
of the analysis can evaluate the calculated solution in various ways for
different aspects.
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The methods and algorithms used in the single steps of the overall
procedure can form an efficient analysis or design tool and determine the
quality of the results of the analysis. For example a use of particular
internal data structure can enable very quick search routines to obtain an
efficient, fast and automated discretisation with parameterised
geometries and materials. The various possible coupling mechanisms of
different fields, circuit equations, methods such as FEM/BEM
combinations, motion term or geometries yield into an accurate
approximation of a realistic physical problem. The properties of the
coefficient matrix decide which equation solver or algorithms must be
used to solve the problem.

2.1 Finite element based CAD systems

CAD systems to treat two-dimensional field problems are in common use
nowadays. Developments in hard- and software have made it possible to
realise user-friendly and reliable systems running on different hardware
platforms such as UNIX and on PCs. Commercially available software is
oriented mainly to operate inside a PC Windows™ environment. A
reason for this can be seen in the price/performance development of the
PC market in the past years. Unix workstations remain more expensive
when compared to the PC competitor and the performance of standard
PCs is already comparable to UNIX workstations. A growing demand on
PC-CAD systems for magnetics can be noticed. This tendency in the
market can identify several reasons. The lifetime of hard- and software is
decreasing. Having user-friendly software available enables the user to
change the CAD system without large training efforts more quickly. It
turns out that software systems are becoming consumables. Observing
recent years, the CAD software price developments have been rather
calm, but the performance characteristics of the software, such as solver
speed and user-friendliness, are rapidly increasing. Using commercial
software can solve more and more complicated problems:

¢ complex geometries in 2D/3D

e complexity of the analysis increases

¢ external circuits including capacitances and inductivities, voltage
and current driven
motion effects
enhanced force computation, local field quantities
enhanced mesh adaptation
coupled field analysis.
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2.1.1 Components and modules
A regular CAD system for magnetics includes various components to be
able to solve the field problem in an appropriate way. To handle the
problem in the three steps of pre-processing, solving and post-processing,
modules such as:

o graphical drawing tool to generate the geometry
mesh generator
material library manager and modeller
problem definition tool
different solver modules for the various field types and
formulations

¢ post-processor tools

e visualisation modules to evaluate the solution and

« file manager tool for the data transfer to other software modules
are pre-requisites of a FEM CAD system. User interfaces are
recommended to have a maximum of process control for a minimum of
efforts during the analysis. To obtain a high quality field analysis tool,
the user-interfaces must allow sufficient interaction of the user with the
process steps. The influence of the interface on the mesh, problem
formulation and solution can be taken from Fig. 2.2. An open data base
interface allows further manipulations of the data by other software
products, for example to generate different graphical representations of
the solution or to analyse FEM models generated by another software
package.

user-interface user-interface user-interface
l/ h \l
pre-processor equation solver post-processor
" & ,:v | —— | R Tt J ’
; = ~ )
W i )
A s 3/ 3
N’ L Y
i v
[ | )
e 0, data byse X4
() )-,- 4K
b Ak
\ — ; 3
% roklem Asolut &4

Fig. 2.2, Process control of a field analysis.
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2.1.2  Graphical drawing tool for problem definition

To be able to model the technical device to be studied by field analysis, a
graphical interface is necessary to generate a technical drawing. This
user-interface must support primitives such as lines, arcs, circles and
points to describe the geometry properly. If different software packages
are used, interfaces to the other software should be available (IDEAS,
PATRAN, AutoCAD DXEF, ...). '

Using the generated technical drawing, boundary conditions are set
and domains with different material properties are defined. Various
labels represent the chosen material of particular domains and set edges
of the geometry to characterise the given boundary conditions there.
Commercial program packages are supporting libraries with various
grades of non-linear ferromagnetic and hardmagnetic materials (Fig.2.3).
To define own materials, special software modules can be used to
include such data. The defined data can be controlled visually after their
definition.

T
1
s /’"-// | 1 T
,-"' . . I /// i: L
- ' oare VACDDTM TR 7 A A
5 [ 4 vacOMaRitmE | 1 a
e S L O /
P L I 2 ,/ e 0 .
& T T
5 < / LA™
VACOUN AT A
A - ’ A 2
b A
[ Z 1 "
(] ! : 1 e ke am - -~ " .
H IO' im H —

] b}

Fig. 2.3. Typical material representations: a) non-linear ferromagnetic and b)
permanent magnet material characteristics.

If semi-automated mesh generators are used, mesh size definitions
have to be given in this step of problem preparation. Therefore, lines,
circles and arcs are selected and subdivided into several parts to form
edges of the finite elements to be generated in the next step.

2.1.3 Mesh generation in general

A mesh generation module must supply a numerical discretisation of
interior regions by the finite elements. Standard triangular elements are
in common use in two-dimensional models (Fig. 2.4) and tetrahedrons
are regularly used to model three-dimensional field problems.
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Fig. 2.4. Domain of interest of two conductors in air and the two-dimensional
FEM mesh.

The mesh generation is automated with a minimum of user
interaction. Several a-priori criteria can be employed to guarantee a
certain quality of the discretisation. The solution accuracy is strongly
dependent on this mesh. If the strategy of an automated mesh adaptation
is supported to enhance the quality of the discretisation in successive
computation steps, only a minimum discretisation is recommended in the
first mesh, More details can be found in the section on adaptive mesh
refinement.

The generation of three-dimensional FEM models is extremely time
consuming. Two different strategies can be followed:

» mesh extrusion (Fig. 2.5)

s solid modelling (Fig. 2.8).

The extrusion approach works with two-dimensional meshes
extruded in the third direction. Rotations of axis-symmetrical geometries
are possible to form the 3D model as well. A disadvantage is that not
every contour can be modelled realistically. For example, conical
surfaces represent a problem (Fig. 2.7). If the scalar potential formulation
is used, excitation coils and windings can be introduced into the model in
a following step (Fig. 2.6).

A solid modeller works mainly in two steps. First the surface of the
geometry is discretised, and after this the volume is meshed in a second
step. Various suggestions to generate solid meshes can be found in the
literature (Tsukerman & Plaks '),



Computer aided design in magnetics

mesh exmosion

three-dimensional mesh of the conduciors
(the mesh of the surrounding air is nol visible)

Fig. 2.5. Basic idea of the extrusion technique.

"_/___..«-'- — ferromagnetic yoke

excitation coil

e conducling wire

11

Fig. 2.7, Comparison of a) extrusion based and b) solid modelling of a claw-pole

generator (sovrce: IEM RWTH-Aachen).
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Fig. 2.8. Solid modelled 3D mesh of the rotor of a claw-pole generator.
(Source: IEM RWTH-Aachen)

After the mesh generation the field problem is defined and can be
solved by the equation solver. This is mainly in commercial software
packages performed without or with a2 minimum of user interactivity. The
appropriate solver has to be chosen.

2.1.4 Post-processor tools
Several tools are recommended to evaluate the field solution. The
potential solution has to be transformed into physical quantities such as
flux density, field strength or forces. Therefore, numerical manipulations
of the potential are necessary. The post-processor module must consist of
a calculator to perform such manipulations.

To be able to evaluate the solution, various graphical
representations of the solution can be of interest:

e colour plots of selected quantities

e plots of the lines of constant potential, flux plots

e diagrams showing quantities along defined contours.

To extract parameters out of the solution, a post-processor
calculator can be used as well.

2.2 Design strategies

The development and design of electromagnetic devices reflects a
complex process. Originating from an initial idea, the construction runs
through different phases. This procedure is terminated when a final
concept is selected and considered to be designed, subject to various
targets and constraints. As a whole, the task of the design engineer is to
find solutions for technical problems. On the way to the latter physical
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and technical product, certain aspects have to be considered.
Technological and material-dependent questions as well as cost
effectiveness and ecological constraints have to be taken into
consideration. A cut-set of the mentioned boundary conditions controls
the feasibility of the final design. With emphasis on electromagnetic
devices, Fig. 2.9 shows a simplified scheme of interdependencies of
targets and constraints. This simple pattern clarifies that the design
process is strongly dependent on the experience of the engineer and
reflects an optimisation procedure with often contradictory aims.
Therefore, the necessity of a systematic and strategic design with
engineering tools is obvious. Here, solution strategies using modern
numerical methods to accelerate and ensure a high-standard technical
product in an overall design process are discussed.

environmental
influence

manufacturing

material conditions
winding, magnetic
¢l, circuit circuit
desired design assemblage

Fig. 2.9. Interdependencies in the design of electromagnetic devices.

Designing electromagnetic devices includes the calculation and
analysis of the electromagnetic field distribution. From the local field
quantities forces, torques and losses can be derived to make predictions
concerning global quantities such as converted power and efficiency. For
complicated geometries analytical field solutions are non-existent or very
hard to obtain. Using numerical field computation techniques of a
general application range, the microscopic field solution leads via a
lumped parameter approach to the desired time-dependent behaviour of
the device (Fig. 2.10).

The microscopic field solution itself delivers important knowledge
regarding the material utilisation. Such results offer the opportunity to
reduce material, weight and the costs of the latter product. To accelerate
development, extensive field computations with various types of material
can be performed avoiding expensive prototyping. It is even possible to
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predict system behaviour before new materials are actually available on
the market. With this knowledge, the design engineer can order special
material to be developed at the material manufacturer or, vice versa, if
the material supplier uses such numerical tools he can suggest and offer
the right choice of material for a particular device.

complicated
geameiry

3D FEM model Maxwell
equalions

1

microscopic flux distribution,
field solution losses, curents

I

ln parameter ~——
mpe:mdnl R IL tv

t —»

Fig. 2.10. Analysis scheme using the finite element method.

Lumped parameter models are essential for the development of
control strategies for electromechanical devices such as electrical drive
systems. To be able to perform real time control schemes, lumped
parameter models are used to form an observer control. Here, very
accurate field computations are recommended to determine the

concentrated elements of such models.
A g-axis
L A

3

A
T (X * X, "
s+ Xor0) 1) Xy X o2y

Fig. 2.11. FEM model of the end-winding area to compute the leakage reactance

X, of a servomotor with d-q model in vector diagram representation.
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For example, the computation of the leakage reactance of electrical
motors can be performed using a three-dimensional FEM model (Fig.
2.11). The knowledge of this reactance is essential for the optimum
control of a permanent magnet-excited servomotor. The vector diagram
in Fig. 2.11 demonstrates the large influence of the leakage reactance
X ,, on the optimum control angle of this permanent magnet machine.
2.2.1 Knowledge-based design
The main aspect of the structured development of novel technical
products is analysis followed by a detailed synthesis. Analysing means
obtaining information on partial functions of the desired overall function,
by investigating single elements and their mutual interactions. In this way
overall links between various principles of the partial functions are
found.

In Fig. 2.12, a structured and knowledge-based development
process is illustrated in a simplified scheme. In this example, the final
technical product has to be designed, able to fulfil three partial functions.
Those individual functions to be connected to the overall task of the
product are a linear motion, a continuous rotation and some reverse
operation. After the analysis phase, in the synthesis step different
physical working principles are selected and evaluated. The selection
process is governed by simple qualitative rules. In this way the partial
functions are evaluated with regard to their feasibility with respect to the
given constraints and limitations (Fig. 2.12). In this step, the feasible
principles are ranked qualitatively by weighted constraints and
limitations.

- ~ .
analysis 9 selection cunsolistion
— OO »O \ apepe N
OO0 '\
valuation
construction (o] OOO % o . . \/
@ﬁ J ' ¥~ calculation i , //
, S \_ J

Fig. 2.12. Knowledge-based and structured design.
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The process of synthesis (Fig. 2.13) leads from qualitative decisions
to quantitative statements in a following design step. The whole process
is accompanied by the consultation of experts and expert knowledge
(Fig. 2.12). A detailed investigation and ranking, i.e. the precise
calculation of the operating conditions, leads by a comparison to the final
technical product. In this loop of iterations, between validation and the
performance of detailed predictions of qualified concepts, a numerical
optimisation combined with field computation methods is found as an
important and powerful engineering tool for the design of
electromagnetic devices.

The quantification and ranking of the working principles is
governed by the choice of materials or other components such as
electronic circuits. Their interdependency on the studied principle can be
distinguished into an object and a rule world. The various, for instance
ferromagnetic, permanent magnet, conductive or dielectric materials, and
respectively components such as the electronic hardware have,
considered inside an object world, particular properties and
characteristics. To employ such object properties in order to obtain a
physical working principle fulfilling a desired function, appropriate rules
determining the function of the object have to be considered. In both
object and rule world, constraints are found to govern a decision to
consider the principle further in the ranking or to reject it. Numerical
techniques can help to employ the rules accurately to the studied object.

clectronic 2id material
hardware A C”
components principle L ,’

clectronic / magnetic

combinations of

principles sireuit

circuils

selection criteria

qualified combinations

.. i} .

comparkson

Fig. 2.13. Process of synthesis.



3 Electromagnetic fields

The notation and basic laws of the electric and magnetic fields are
explained in this section. It is not intended to present the complete
electromagnetic field theory. Only a limited set is given, necessary to
understand the types of physical problems treated in this book, enabling
the modelling of technical devices to be studied by numerical simulations
of such fields. In this book, fields used for energy conversion are
discussed only. The high frequency fields that, except those for
microwave heating, are used to transfer information are not considered.

3.1 Quasi stationary fields

In general, two classes of electromagnetic fields can be distinguished,
the time independent static and time varying fields (Fig. 3.1). They can
be scalar and vector fields. A typical scalar field for example is the
electrostatic potential distribution @(x,y,z) between charged electrodes

eleclromagnelic fields

static 2/ 2 =0 non-static &/ @ # 0
slow varying fast varying
quasi-static quasi-
stationary
clectric  magnetic  current eleciric  magnelic  curmrent current clectro-
E H flow J E H flow J | fow J | magnetic
wavyes
stationary quasi-stationary non-
stationary

Fig, 3.1. Classification of electromagnetic fields.
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and the magnetic field strength H(x,y,z); surrounding a current

carrying conductor is a typical vector field. In the group of slow varying
fields we can find the same types.

We have to distinguish between the slow and fast varying electrical
current flow field with regard to the geometrical dimensions of the
current carrying conductor. The slow varying fields are understood to be
fields not leading to current redistributions. This means that there are no
eddy current effects as the dimensions of the current carrying conductor
are smaller than the penetration depth of the field. The current at those
frequencies is distributed as in the DC case, uniformly over the whole
surface of the conductor. Eddy current effects are considered in the fields
with fast varying time dependency, due to the low frequency treated as
quasi-stationary. High frequency fields as focussed in antenna problems,
leading to the electromagnetic waves, are not considered in this book.

Most of the physical issues in electrical energy engineering can be
described by quasi-static phenomena. Slowly varying and periodic fields
up to 10 kHz are considered to be quasi-stationary. Electrical energy
devices such as electrical motors and actuators, induction furnaces and
high-voitage transmission lines are operated at low frequency.
Exceptions are microwave devices for electroheat applications, where
inherently the displacement current is not negligible.

Typical examples of quasi-static electromagnetic fields are the
fields excited by coils in rotating electrical machines, transformers and
inductors. Inside these conductors the displacement current is negligible
and the magnetic field H outside the coil is exclusively excited by the
free current density J. For those quasi-static fields, AMPERE’S law is
applicable (Binns et al."?).

VxH=J (3.1)

To decide whether the displacement current can be neglected or not,
depends on the wavelength 1 of the problem considered in the frequency
domain. If it is large, when compared to the physical dimensions of the
problem 7, the displacement current is negligible. To consider this
phenomenon in the time domain, the rise time T, of a step function must
be large inside the problem compared to the transit time //v. Field
problems are quasi-static if eq.(3.2) is valid.

T >>Ily

A>>1
In general T, =5...10// v , respectively A =5...10/ is sufficient.

For this class of problem, the interesting fields vary slowly and can
be periodic. Then three categories of problems are distinguished:

(3.2)



FElectromagnetic fields 19

e static

e slowly varying transient

e time-harmonic eddy current.

In time-harmonic problems sinusoidal varying field quantities are
assumed. In theory, a time-harmonic solution is only valid for a linear
system as a sinusoidal excitation does not yield a single frequency
response in the non-linear case.

3.2 Boundary value problem

Many scientific engineering or physical problems lead to boundary value
problems. The describing differential equations have to be solved in a
volume satisfying particular conditions on its boundary I" (Fig. 3.2).
Therefore, the definition of a boundary value problem is necessary and
evident. The proper definition of a numerical model is important to
obtain correct results and assumes a good understanding of the
underlying physical background of the field problem.

r

Fig. 3.2. Boundary value problem.

For obtaining the solution of the boundary value problem, it can be
formulated in the form:

Find a function u €V, so that for all v eV
a(uy) = f(v). 3.3)

The boundary value problem is defined by a differential equation
a(u,v) feasible in the volume 2. u is the exact solution of the problem

that has to be found.

V is a set of continuously differentiable functions in Q with for
example v=0 at the boundary I". The type of functions v and differential
equation that can be employed is subject to the method or approximation
used to solve the field problem.

Assuming that the appropriate differential equation for a particular
physical problem is known, the definition of the numerical model! is
dependent on the correct choice of boundary conditions.
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If it is considered that the desired field solution is a local potential
distribution #=¢(x) in a local co-ordinate system and time depending

x =(x,,%y,..:%, ,f), different types are possible and can be defined.

3.2.1 Initial and boundary conditions
Boundary conditions have to be applied to a field problem to ensure a
well posed problem with a unique solution. Particular attention has to be
paid to the Dirichlet and Neumann boundary conditions. Applying these
boundaries in an appropriate way reduces the size of the field problem
significantly. On the one hand, therefore, the accuracy of the solution can
be improved with the same computational expenses; on the other hand an
enlarged domain can be studied resulting in the same solution accuracy.
Mainly finite element program packages are limited in the number
of elements to approximate the geometry of the problem or the
computational efforts must be limited in order to obtain acceptable
computation times, Therefore, the correct and appropriate application of
the boundary conditions is the key to defining field problems and to
allow an accurate solution in an efficient way.

3.2.1.1 Starting conditions When a differential problem covers the time
domain, the starting conditions are quantities valid at simulation start-
time, for example the velocity, flux couplings with windings in electrical
machines, field exciting currents or voltages that have to be set and
defined in order to find the solution of a transient problem formulation.

3.2.1.2 Dirichlet boundary condition A Dirichlet boundary condition
sets the unknown function to a known function on the boundary of the
differential problem.

#(x) = g(x) = const. (3.4)

Fig. 3.4 shows in a typical example the application of the Dirichlet
boundary condition of an electromagnetic problem. A ferromagnetic
circuit is shown consisting of a U-shaped permanent magnet, an air gap
and ferromagnetic back iron. Lines of constant vector potential represent
the flux lines. Physically, the field is assumed to be zero at a sufficiently
large distance from the magnetic circuit. Therefore, a Dirichlet boundary
condition, the potential set to zero, is applied at the entire boundary of
the problem. Due to e€q.(3.4) it is impossible that flux lines can cross the
boundary T'. Fig. 3.4b shows the potential lines of an electrostatic field
with Dirichlet boundary. Here, the potential distribution excited by the
charged plates of a capacitor is computed.
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#(x)=0=const.

e} f)

Fig. 3.3. Dirichlet boundary condition applied to the FEM model of an electrical
machine. a) Mesh of the model accounting for flux relief, b) the flux lines, c) the
mesh neglecting the flux relieve of the machine, d) its flux plot, &) the mesh
applying the Kelvin transformation, f} its flux plot.
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The Dirichlet boundary is an essential boundary condition as it does
not characterise the space V . It is sometimes called the boundary
condition of first kind.

#(x) = 0= const

Fig. 3.4. Dirichlet boundary condition a) for an electromagnetic and b) for an
electrostatic problem.

For the analyst of a field problem, a crucial question is how far
away the Dirichlet boundary condition has to be applied from the field
exciting sources to restrict the field-domain on the one hand and to have
an accurate overall solution of the near and far fields respectively on the
other hand. When analysing electromagnetic fields in the presence of
ferromagnetic material and small air gaps, such as in electrical machines,
an outer diameter of roughly 20% above the characteristic diameter of
the device can be applied to compute the field inside the device
accurately (Fig. 3.3a). Flux lines can not pass the Dirichlet boundary. If
the flux relief inside a ferromagnetic core due to saturation can be
neglected, the outer diameter of the back iron yoke of electrical machines
can be represented by the Dirichlet boundary condition (Fig. 3.3c). If the
flux outside the machine yoke can be neglected, the number of elements
in the numerical model and thus the computation time, decreases.

If the far field is analysed, a diameter of up to 5 or 6 times the
characteristic dimensions of the device should be used or special
transformations, such as the Kelvin-transformation, an open boundary
condition (Fig. 3.3e/f), can be employed to terminate the field in the
transformed infinite distance.

3.2.1.3 Neumann boundary condition The next important boundary
condition is the Neumann boundary condition. Here, the known value of
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the derivative of the unknown function in the normal direction of the
boundary I’ is prescribed.

%‘l = g(x) = const. (3.5)

If the derivative in normal direction is constant, lines of constant
potential can pass the outer boundary I of the studied domain Q.

The most important property of this type of boundary condition is
that by knowing symmetries of the field, and applying the Neumann
boundaries there, the numerical model can be reduced to obtain the same
solution of the problem. In this way, the problem size, the time to prepare
the field problem and the computational efforts can be reduced
significantly. On the other hand, if less than the complete geometry has
to be defined and discretised, a higher accuracy is achievable for the
overall solution of the problem without extra effort. Therefore, particular
attention must be paid to this boundary condition.

Fig. 3.5a shows the electromagnetic field problem with applied
Neumann boundary at the symmetry line of the U-shaped permanent
magnet. This is the only symmetry inside this model and yields a
problem reduction of 50% with respect to the accuracy of the problem
solved in Fig. 3.4.

The Dirichlet boundary remains of course at the outer diameter of
the domain studied.

#(x) =D = cansi,

Fig. 3.5. Neumann boundary condition applied at the line of symmetry.

By looking at the electrostatic example of the capacitor in Fig. 3.5,
an additional symmetry in the potential distribution attracts attention.
Knowing the potentials at the electrodes of the capacitance, +100 V at
one side and -100 V at the other, the Dirichlet boundary with a constant
potential of ¢ Volt can be applied, reducing the problem size a second
time (Fig. 3.6).
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#(x)=0=const.

\_ #(x)=0=const.

Fig. 3.6. Lines of symmeiry with appropriate boundary conditions.

The Neumann boundary is a natural boundary condition as it does
not influence the definition of the space ¥ . It is automatically satisfied at
the boundary and is sometimes called the boundary condition of second
kind (Zienkiewicz & Taylor'?%).

3.2.1.4 Mixed boundary condition A mixed boundary is a combination
of the two last boundary conditions (Dirichlet and Neumann).

a¢(x) +b ﬁgz;x) = g(x) 3.6)

It is called a Robin or Cauchy boundary condition or boundary
condition of the third kind. This type of boundary condition (Comini et
al.’’) can define convective boundaries in heat conduction problems.
There, the heat flux as function of the temperature is prescribed at I" and
the temperature of the surrounding medium is known.

3.2.1.5 Binary or periodic boundary conditions Until now only
symmetries in the geometry were considered to lead to the application of
the Dirichlet or Neumann boundary conditions. Especially in cylinder
symmetric devices, such as rotating electrical machines, not only
symmetries in the geometry but also in the magnetic field distribution are
present. Under load conditions the air gap field of an electrical machine
repeats periodically every double pole pitch. At no-load operation, it
repeats itself every pole pitch. This field periodicity can be used to define
another type of boundary condition to reduce the size of the numerical
model. The local potentials in such boundaries depend on the solution of
the field problem and thus inherently occur always in pairs. One
boundary is computed and the opposite one is linearly linked to this
value.
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Fig. 3.7. Periodic boundary condition applied to a 4-pole induction motor model.

In Fig. 3.7 the dotted lines indicate the pairs of the boundaries.
Obviously, the numerical discretisation of the model at those boundaries
must be identical. This type of periodic boundary condition has the form:

kg, (x}+ ¢ (x)=m. (3.7
If m=0 and k equals 1 or -1 this boundary is called binary boundary
condition,

3.2.1.6 Far-field boundary condition The differential formulation of
the field equations in the finite element method has its disadvantages for
computing open and unbounded physical fields. The whole field domain,
theoretically until infinity from the field sources, must be discretised to
be able to compute the far field. For example, if the electromagnetic field
in the vicinity of a high voltage transmission line is analysed, the air and
ground have to be modelled. To model the infinity, a Kelvin-
transformation can be used to map the infinite space to a finite space,
forcing their solution to be identical (Fig. 3.8). Using this technique
reduces the problem size and computational expenses significantly. Fig.
3.8 shows the circular domain of interest of an electrostatic problem with
a high voltage tower in its centre. The small circle above is the FEM
model that approximates the infinite space. There, one of the centre
nodes is set to zero potential whereas the nodes at its circumference have
the same potential as the diameter nodes of the large circle. The lines
connecting both circles illustrate this link.
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Fig. 3.8. Open or far-field boundary condition applied to the simulation of the
electromagnetic field of a high voltage transmission line.

33 Field equations in partial differential form

Every electromagnetic phenomenon can be attributed to the seven basic
equations, the four Maxwell equations of the electro-dynamic and those
equations of the materials. The latter can be

e isotropic or an-isotropic

e linear or non-linear

e homogenous or non-homogenous.

The Maxwell equations are linked by interface conditions. Together with
the material equations they form the complete set of equations describing
the fields completely.

In this section the Maxwell equations, necessary for the calculation
of electromagnetic fields, are discussed in their differential form. The
seven equations describe the behaviour of the electromagnetic field in
every point of a field domain. All electric and magnetic field vectors E,
D, B, H, and J and the space charge density p are in general functions of
time and space. The conducting current density can be distinguished by a
material/field dependent part J. and by an impressed and given value Jj .
It is assumed that the physical properties of the material permitivity €,
permeability p and conductivity ¢ are independent of the time.
Furthermore it is assumed that those quantities are piecewise
homogenous.

Three groups of equations can be distinguished:
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group 1:
B
i VxE=—-— 3.8
0 Y (3.8)
(ii) VxH=J+Q (3.9)
a
group 2:
(iii) V-B=0 (3.10}
(@iv) V-D=p (3.11)
group 3 for isotropic material:
(%) D=¢E (3.12)
(vi) B = H (3.13)
(vii) J=J, +J =J, +0oE (3.14)

In the literature published in different languages different operators
are used. Here for the identity of the operators ( V: Nabla or del)
V-X2divX
VxXZcurl X rot X
VX £ grad X
is chosen. If &, #ando are constant in a domain their position in the

equations can be exchanged for the geometrical vector operators
V- and V. If they are constant in time, their position can be exchanged

for the time derivatives 8/0¢ .

The three groups of equations are called the main equations, the
laws of conservation and the material equations. The first equation (i),
eq.(3.8) is known as the law of Faraday-Lenz with E the electric field
strength and B the flux density. Eq. (ii), (3.9) is known as Ampere's law
with magnetic field strength H, conducting current density J and D the
electric flux density. The term 4D/ &, the displacement current density,
is neglected from now on, as already argued. Equations (iii), (3.10) and
(iv), (3.11) describe the constitutive properties of the magnetic flux
density and the displacement current with the space charge density p. All
six field quantities E, D, H, B, J and p are dependent on each other.

3.3.1 Motion

Electric and magnetic fields form a unit with phenomena depending on
the point of view of the observer. An observer at rest looking at a moving
charge perceives an electric field caused by the charge and an additional
magnetic field. The observer moving with the same speed as the charge
does notices only the electric field. The field quantities can be
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represented in different co-ordinate systems by different electric and
magnetic field quantities. The Lorentz-transformation can be used to link
both resting and moving systems. The field strength in a resting system
x,y,z and of a uniformly in x-direction moving system x'y',z' can be
given by:

Ei=E
5=8

, _(E+vxB),
T .

B = (B—(v/c*)x E),
N v1-v?/c?

A distinction is made between the parallel and perpendicular
direction of motion. The vectors for the field quantities are calculated by:

[ E, ]
E; E,—vB,
E' = E; - vrl——-.v’/cz (316)
E,
E +vB,
_w)l-v’/c—J
§ B ;

B! B,+Evi/c

B'=|B |=| J1-v/c* : (3.17)

B,-Eyvlc’
| Vi=v?/ ¢ J
Using the Lorentz transformation for the charge density p' and the

vector of the conducting current density J' for example for a particle
beam moving in the x-direction with

,_p=Jyvic
'\11—1’2 /c*

it can be written

(3.18)
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J.—vp
Ji=vi/c
gy
J=\J,|= J, : (3.19)
J;
Jl

In a similar way', the scalar potential ¢’ and vector potential A’ of a
moving charge in the x-direction is transformed by:

o 9vA,
e o
_A,—v/cfig-'
Ji-viie?
4,
A=|a|=| 4 . (3.21)
A
A,

In practically all electrical enginecring problems of technical
importance, observed phenomena concerning motion are slow in an
electromagnetic sense, when the speed v is compared to the speed of
light c. A possible exception is a high-energy particle accelerator in
pulsed-power-technology. Observing an uniformly moving system x'y',z
from a resting co-ordinate system x,y,z and assuming v<<c, the
transformation is simplified (Schwab '*") to:

E'=E+vxB
3.22
B'=B-—xE ©3-22)
C

Applying the quantities within the appropriate co-ordinate system,
the Maxwell equations remain valid. The field equations from groups 1
and 2 are Lorenz invariant. The same can be stated for the forces on
charges caused by electric and magnetic fields. Forces depend on the
frame of reference and can be of electric or magnetic origin. The Lorentz
force is:

! The various potentials are introduced in a later section.
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F=F,+F,_  =0E+Q(vxB) . (3.23)

In contrast to the Lorentz invariance of the field equations, the
material relation (vii), (3.14) changes for the moving system and the
resting observer to:

J =oc(E+vxB) (3.24)
and respectively for the resting system with the moving observer using
J'=J-vp, to:

J-vp=0c(E+vxB) . (3.25)

3.3.2 Interface conditions
Technical devices are constructed using piecewise homogenous
materials. The boundary of such materials can be identified as a surface
inhomogeneity. To consider this boundary, the associated interface
conditions for the electric and magnetic field are discussed in the
following section.

To derive those interface conditions, the integral form of the
Maxwell equations is used.

Table 3.1. Maxwell cquations for quasi-stationary fields.

differential form integral form
i 3.26
& VxE=-2 §E-dr=-22 e
a & dt
(ii) VxH=1J cfH-dr:I (3.27)
c
(iii) V-B=0 4B~dS=0 (3.28)
s
5

Here, ¢ is the magnetic flux, [ the conducted current, Q the charge, C indicates
the contour integral and S the surface integral.

3.3.2.1 Normal component Maxwell equation (iii), (3.28) in integral
form is used to derive the interface conditions at the boundary of
different materials for the normal component (Fig. 3.9). Using
dS, =-dS, =ndS with n the unit vector in normal direction yields:

limJB-ds = [B, s, +[B,-ds, = [(B,-B,)n-dsS=0 . (3.30)
S 5 5 ¥
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ds
i
_____ \%n
S — JX "
=== — w \
muatesinl boundary
ds S

Fig. 3.9. Interface between material @ and @ with different properties.

The surface S can be of arbitrary shape and the integral only
vanishes if the integrand is zero. This yields the interface conditions for
the electromagnetic field. The components of the magnetic flux density B
are continuous at material boundaries even if they have different
ferromagnetic properties.

(B,-B,)n=0
or (3.31)
'Bul=‘Bn1

With respect to the finite element method, this means that the
normal component of the flux density must be constant at the boundary
between finite elements (Fig. 3.10).

Fig. 3.10. Normal component of the flux density at the interface of two triangular
finite elements.

Similar to the normal component of the magnetic flux density, the
normal component of the displacement current density can be derived.
Here, Maxwell equation (iv) in integral form eq.(3.29) is evaluated in the
same way yielding:

lim{D-dS = [D, -dS, +[D,-dS, = [(D,~D,)n-ds

§ 5 5 s 3-32
= [p-dV =[dQ=[p,-dS fes
¥ v §

Where pis the space charge density, V' indicates the volume
integral and o, = dQ/dS the surface charge density,
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(D| _Dz)' n= Py
or (3.33)
Dnl = Dni + pS

With the presence of a surface charge density, the normal
component of the displacement current density is discontinuous at the
interface of a material boundary. Without surface charge density, the
normal component of the displacement current density is continuous at
boundaries.

Fig. 3.11. Normal component of the displacement current density at the interface
of two triangular finite elements.

To discuss the interface conditions for the conducting current
density J, the Maxwell equation (ii), eq.(3.27) is considered. With (vi),
(3.13), the same conditions found for the magnetic field can be applied
for the current density as well:

J,-J,)n=0
or (3.34)
Jn[ =Jn2

Fig. 3.12. Normal component of the current density.

3.3.2.2 Tangential component The interface conditions valid for the
tangential component of the electrical field E can be derived from the
integral form of the first Maxwell equation (i), (3.26).
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e - ,_! T
£ -;:r‘x'-«- R e
material boundary e

Fig. 3.13. Interface and path of integration between material @ and @ with
different material properties.

Applying the path of integration on the contour drawn in Fig. 3.13
and counting positive as indicated, yields:
limJE-dr = [E, -dr, + [E,-dr, = [(E,~E,)t-dr
¢ c 3 £ 3‘35)
B (
=-13gj§-cs=o ,

It is assumed that dr, = -dr; = tdr , with t the unit vector in
tangential direction. With a finite B and w—0 the surface integral over B
vanishes and this yields:

(EI —El)'tz
nx(E ~E)=0 (3.36)
ar
E =E

u

Fig. 3.14. Continuous tangential component of the electric field strength.

The tangential component of the electric field strength is continuous
at interfaces of a boundary with different material properties.
Analogous to the electric field strength and employing the integral
form of Maxwell equation (ii) eq.(3.27) yields:
lim{H-dr = [H,-dr, + [H,-dr, = {(H,-H,)t-dr -
=lim [d/ =0+ [/, dr
w30

Here J, is a possible surface current density.
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[l -B,)t-7, =0 . (3.38)

c
Herewith, the interface conditions for the tangential component of
the magnetic field strength H can be written by:

(H,-H,) t=
H-H)=J
R = (3.39)
or
H|I2H11+Ja

Fig. 3.15. Continuous tangential component of the magnetic field strength (},=0).

With vanishing surface current density the tangential component of
the magnetic field strength is continuous at interfaces.



4 Potentials and formulations

The Maxwell equations represent the physical properties of the fields. To
solve them, mainly the differential form of the equations and
mathematical functions, the potentials, satisfying the Maxwell equations,
are used. The proper choice of a potential depends on the type of field
problem. In this section, the various scalar and vector potentials are
introduced.

The electric vector potential for the displacement current density
will not be introduced here, because it is only important for the
calculation of fields in charge-free and current-free regions such as
hollow wave-guides or in surrounding fields of antennas.

Various potential formulations are possible for the different field
types. Their appropriate definition ensures the accurate transition of the
field problem between continuous and discrete space.

Using these artificial field quantities reduces the number of
differential equations. Considering a problem described by » differential
equations, a potential is chosen in such a way that one of the differential
equations is fulfilled. This potential is substituted in all other differential
equations, the resulting system of differential equations reduces to n-/
equations. It is distinguished between magnetic and electric vector
respectively scalar potentials:

Table 4.1. Definition of the potentials.

potentials
scalar vector
lectri =
electric E=—VV—§ J=VxT
A
magnetic H=T-V¢ B=VxA

H=-V¢
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4.1 Magnetic vector potential

By using the vector identity
V. (VxA)=0 (4.1}
and applying eq.(iii), (3.10), introduces the magnetic vector potential A.
The magnetic flux density is derived as the cur! of another vector field:
B=VxA . (42)
The magnetic vector potential is suitable in regions with and without
conducting currents. The vector field A is assigned right handed to the
direction of the magnetic field B (Fig. 4.1).

o= T,

Fig. 4.1. Geometrical assignment of the vector potential A with the magnetic

field vector B.
A static magnetic problem is described by
VxH=1J, 4.3)
V-B=0

By using the magnetic vector potential A, the system of differential
equations is reduced to

Vx(EVxA)=7, . (4.4)
U
Applying the vector calculus Vx(VxA)=V(V-A)-V'A to
eq.(4.4) yields:
V(V-A)-VA=ul, (4.5)

with V-A =0 and by assuming a constant permeability 4, leads to the
A-formulation of a magneto-static field, a Poisson equation:
ViA=-uJ, . (4.6)
To consider quasi-stationary fields, for example necessary for eddy

current calculations, the magneto-dynamic formulations have to be
employed. In addition to Ampere’s law, the Faraday law (i), (3.26) has to
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be considered to evaluate the contribution to the field by the eddy
currents:

0 7]
VxE=—-—B=-—VxA . 4.7
ot ot )
Now employing Ohm’s law to calculate the eddy currents J, yields:
0
J=-c—A . ' 4.8
! o (4.8)

Ampere’s law can now be rewritten, yielding the A-formulation for
the quasi-stationary magnetic field in the time domain:

IxLVxA)rala=d, . (4.9)
U ot

Substituting again Vx(VxA)=V(V-A)-V’A and assuming
V.A =0, results in a similar A-formulation in the time domain for the
transient magnetic field:

V‘A—,uo--j—tA=—;1J0 . (4.10)

Assuming sinusoidal excitation currents with an angular frequency
@ and thus substituting

0

—A=joA 4.11

o (4.11)
yields the A-formulation in the frequency domain to solve eddy current
problems.

VA- jo- puoA =-ul, (4.12)

This equation is the A-formulation to describe time-harmonic
problems. The time dependent components of the vector potential

A(t)= A cos(awt + @) are expressed by:

A=A-e™" . (4.13)
The current is expressed in analogy in its complex representation.

4.2 Electric vector potential for conducting current

For the calculation of eddy current problems the electric vector potential
is often employed. The current density fulfils the zero divergence
condition. Therefore, and analogous to A, an electric vector potential T
can be defined:

J=V¥xT . (4.14)
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4.3 Electro-static scalar potential

By using the vector identity Vx(V¥) =0, eq.(i), (3.26) can be rewritten:
E=-VV . (4.15)
The negative sign is arbitrary and applied to have a close similarity
to the definition of the magnetic scalar potential. Employing E to eq.(iv),
(3.29) yields:
v.vww=yr=-£ | (4.16)
£
This is an equation of the Poisson type.

44 Magnetic scalar potential

By analogy to the electric field, the magnetic field strength is calculated
as the gradient of a scalar potential. It must be distinguished between
current-carrying and current-free regions.

44.1 Current-free regions
The magneto-static problem without conducting currents can be
formulated in terms of the magnetic scalar potential ¢ .

With the vector identity Vx(Vg)=0 and Ampere’s law, a

magnetic scalar potential ¢ can easily be defined by evaluating:

H=-V¢ . 4.17)

This potential formulation is not suitable for problems inside regions
with conducting currents. A typical application for this type of potential
is the calculation of a magnetic shielding.

With the zero divergence condition of the magnetic flux density the
¢ -formulation of the scalar magnetic potential is introduced:

V-(uV$)=0

uV'g=0 .

This formulation is a Laplace equation. ¢ is a scalar and A in the
vector potential formulation of the magnetic field is a vector quantity. By
using fthe same numerical discretisation, the scalar potential problem
consists of a third of unknown when compared to the formulation using
the vector potential. This example makes clear that an appropriate choice
of the potential formulation has significant influence on the size of the
problem.

This definition of the scalar magnetic potential, H=-V¢, causes
problems in multiple connected domains.

(4.18)
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Fig. 4.2. Multiple connected domain.

The domain is free of conducting current. There is a current /
carrying conductor leading through the opening in the domain (Fig. 4.2).
Applying Ampere’s law on the contour A inside the domain yields:

[H-dl=|-V¢-dl=¢,-¢, . (4.19)

The potential difference ¢,-¢, can only be non-zero if ¢ is
discontinuous inside the domain. Therefore, a discontinuity, a cut, is
defined in the way that by considering the cut as an outside boundary, the
domain is not further multiple connected.

V-V¢=Vig=I . (4.20)
Therefore, the boundary condition applied to the cut is
¢, -0, =1 . (4.21)

This is a periodic boundary condition.

44.2 Current-carrying regions

In the case of current-carrying regions it is not possible to define a

magnetic scalar potential. However, by again using an arbitrary vector

field T, it is possible to define a similar potential (Silvester & Ferrari'®)
The electric vector potential T and Ampere’s law eq.(ii), (3.27)

yield:

Vx(H-T)=0 . (4.22)
With the vector identity

Vx(Vg)=0 , (4.23)
the gradient of the scalar magnetic potential ¢ is now defined by:

H-T=-V¢ . (4.24)

The zero divergence condition of the magnetic field V-B =0and
the material equation combining B and H yields an equation of Poisson
type:

V-(uVg)=V-(uT) . (4.25)
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A disadvantage in solving this problem is that the solution of the
magnetic field problem has to be obtained in three steps:

1. Determine the auxiliary potential function T .

2. Solve the Poisson equation V-(uV¢g)=V-(4T) to find the

magnetic scalar potential.
3. Evaluate V¢ and T to obtain the required overall solution of H .

V-(uV§)=puVi¢=V-(uT) (4.26)
is called a T¢-formulation. The magnetic scalar potential has the
dimension [A]. This potential formulation is in common use in magneto-
static and diffusion problems. To determine T, Biot-Savart’s law can be
evaluated (Hafner'").

By using the finite element method, T can be determined in the
following way:

1. Create a tree of mesh edges.

2. T=0 for all tree-edges.

3. Apply Ampere’s law to each element and determine T for all co-
tree edges.

A tree in the topology of the finite element mesh is defined as a set
of edges reaching all nodes of the mesh but forming no loops in this
mesh. The associated co-tree is the set of the remaining edges.

T is constructed as a field built of edge elements w, :

T=Sh,w, . (4.27)
4 4

sl

The coefficients 4, of the elements associated with the tree edges

are 0. The coefficients of the elements associated with the co-tree edges
are calculated from Ampere’s law (Fig. 4.3):

[Hdr=h,w, +h,w,+h,w, =1 . (4.28)
r

hl.w d

h.w

42«1

Fig. 4.3. Tree definition and finite element with imposed current.
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With Table 4.2 a comparison of the properties of the magnetic
vector and scalar potential is possible.

Table 4.2. Comparison between A- and ¢ -formulation.

A-formulation K -formulation
putential vector potential scalar potential
formulalion VA =—ul (V9 =V -(¢T)
implicitly fulfilled equation V-B=0 VxH=J
explicitly fulfilled cquations VxH=J V-B=0

B = ﬂH B= }.lH
source field J T has to be determined
additional condilion gauge cul
element type cdge node

4.5 A ¢-formulation

It is sometimes interesting to use a hybrid A ¢ -formulation. The ¢ -
formulation is used in regions without current whereas an A-formulation
is used in regions with an applied current density. At the interface
surfaces between regions with a different potential formulation, the
conditions for H and B are applied:

(H,-—H,)-t=(V¢—%VxA)-t=0 , -

(B,-B,) n=(uV¢-VxA)n=0 .

The advantage of this approach compared to the ¢ -formulation, is
that no source field T has to be constructed. The advantage of this
approach compared to the A-formulation, is that regions without current

are described by a scalar potential instead of a vector potential. A
disadvantage of the hybrid formulation is the extra interface condition.

4.6 AV-formulation

Using Ampere’s law and the magnetic vector potential and applying the
appropriate material equation yields:
VxH=J=J +ok ,

" (4.30)
V><(VxA)+4ucr(VV+EA)=,uJll 3

V‘A—pagt-A=-,uJ,—,uchV . (4.31)
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This equation is called the AV-formulation of the magnetic field.
The presence of the derivative in time indicates the magneto-dynamic

field problem. By substituting %A = jwA this formulation is transferred

from the time domain into the frequency domain:
V'A-jo poA=-uJ, —pyoVyv . (4.32)

Fig. 4.4. Field problem in two-dimensional AV-formulation.

4.7 In-plane formulation

The inverse problem, to calculate a current density distribution for an
imposed magnetic field can be obtained by using an in-plane formulation.
Applying the Maxwell equation (3.8) and using the magnetic scalar and
electric vector potential yields a particular T ¢ -formulation.

a 0
VxE=——B=-—u(T-V¢) .
x = o HT—¥9)
J=0E=VxT yields: (4.33)
VxE=Vx(leT)
o

Finally the in-plane T ¢ -formulation, valid in the time domain, is
described by:

Vx(VxT)+ya—aa}-T=,ua§V¢ . (4.34)

In the frequency domain, by assuming a sinusoidal magnetic field
and substituting %T = jwT , it can be written:

Vx(VxT)+ jo- poT = jo-ucVé . (4.35)
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This formulation is very similar to the A-formulation of the
magnetic field and can be solved with the same methods. This
formulation can not be applied to non-conducting regions. There,

V- (4T)= V- (uV§) (436)

must be evaluated.

0}

Fig. 4.5. In-plane T ¢ -formulation.

4.8 AV-formulation with vxB motion term

For the moving system and the resting observer, as introduced earlier, the
motion term is considered by applying:
J=cE+o(vxB) . (437)
Together with Ampere’s law (3.9), this leads to the AV-formulation
considering the motion term vxB.

V‘A+pa(vx(VxA))—pa%A=—yJo + uoVvV (4.38)

Considering the motion term causes the [ater coefficient matrix to be
non-symmetric. This is important for the stability of the method used. To
obtain a stable solution procedure, the discretised part of the convection
term uo(vxB) has to be smaller when compared to the term V'A
(Hackbusch ).

4.9 Gauge conditions

With the known material equations, the magnetic flux density B can be

expressed by the magnetic field strength H or vice versa; D and J

respectively can be determined by the electric field strength E:
VxH=J=J, +0E

3 0 (4.39)
\% A—V(V-A)—pa-a?A=—,an + povVV |
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and

V.D=p=V-(E)=-V-s(VV +2-A)
ot (4.40)

vevrsllg k==t
ot £

The numerical difficulty with the equations is obvious; they are
coupled. In both equations both potentials are found. Evaluating these
equations to obtain the potentials shows that the solution obtained in this
way for the vector potential A and the electric scalar potential ¥ is not
unambiguous. Therefore, a gauge has to be applied to define the potential
solution uniquely. Different gauges are possible. Arbitrary additions to
the coupled potentials A or ¥ do not influence the field values:

B=VxA , (4.41)

VV =-E ~%A . (4.42)

Those additional constants can be normalised by fixing an arbitrary
point in the field region to zero. With this normalisation, the potential
solution is not yet unique. Therefore, a divergence condition for A has to
be given. The choice of this condition is arbitrary because it influences
the values of A and V only, but not the value of the derived field
quantities B and H. The most simplest and frequently used gauge
condition for static fields is the zero divergence condition, the Coulomb
gauge:

V-A=0 . (4.43)

Applying the Coulomb gauge yields for the potential eqs.(4.39) and
{(4.40):

VA - ,ucr% =—pJ, +uoVV (4.44)

and

v.vr=vr=-£ | (4.45)
£

Employing the Coulomb gauge here simplifies these equations
insignificantly. The potentials stay coupled. Here, it is interesting that the
potential V satisfies and describes the type of a Poisson equation.

To de-couple the potential equations, the Lorentz gauge

V-A=—uc¥ (4.46)
can be used. Applied to the equations (4.39) and (4.40) this yields:
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8
VIA-uo—A=- ,
S #,

(4.47)
VW sl
ot £
An advantage of using the Lorentz gauge is the fact that the de-
coupled potential equations satisfy differential equations of the same
form. Assuming the case p =0, the Lorentz gauge can be written by:

V'VV+§V'A =0 . (4.48)

For the source-free case, p=J,=0, the Coulomb gauge is
interesting. The equation for the scalar potential becomes a Laplace
equation and if the scalar potential is normalised to zero in infinite
distance, the solution of the Laplace equation is trivial ¢ =0. Therefore,
only one equation remains:

VA — /.ta'gat-A =0 . (4.49)

The interesting field vectors E and B can directly been determined
by the vector potential:
B=VxA ,

_2, (4.50)
at

The Lorentz gauge is in common use in solving wave equations.
There, the displacement current density is considered. The
inhomogeneous wave equations are given at this place for completion:

V’A-;&aEA—-yea—lA=—an g
ot ot
(4.51)
vV - to‘EV—psa—zV=—£
et or £

4,10  Subsequent treatment of the Maxwell equations

To obtain solutions for real-life field problems, a subsequent treatment of
the Maxwell equations is necessary. The potentials are introduced to
reduce the mathematical dimensions of the field problem. This approach
results, for example for a line integral, in building a simple difference. To
improve understanding of the field equations, a scheme is introduced
representing the Maxwell equations. The various potentials are
implemented in this scheme (Hafner *7).
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The four field equations in differential form can immediately be put
into a schematic:

B
E — ‘E
J P H
P T D
B —Yy 0

To keep magnetic and electric field quantities in the same column,
the div and curl operators point to the right or left respectively. Consider
the four following possible chain or arrow structures, with s a scalar and v
a vector potential field.

I 5 —

2 0 —_— ¢ Y
3 v _ TS

4:

The arrows represent the differential operators div, curl or grad
respectively. A chain consists of at maximum two arrows. The second
arrow always points to zero. Two arrows in one direction indicate a
double derivative in the same direction in space.

Comparing this structured scheme with the structure of the Maxwell
equations indicates the places where the scheme has to be completed by a
potential. It is obvious that the fourth arrow chain can be completed by
the vector potential A in the form B = V x A because the flux density B
satisfies the zero condition for a divergence free field eq.(iii), (3.28).

Applying this relation to the first Maxwell equation yields

Vx(E+%A)=0 . (4.52)

Completing with the electric scalar potential of a gradient field ¥
and in arrow notation it is:

JA

-V v E+E ox 0

The complete scheme with the arbitrary potentials can now be written by:
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A
4 v —E—"E Vx 0
0 P J P H
¥ D
A e B _v 0

To study the field equations further and to see the interdependencies
between the source terms and the potentials, an improved graphical
scheme can be used, the diagrams of Tonti (Bossavitm).

Using the same schematic as in the last section for the differential
operators, and introducing an additional arrow for the time dependency of
the quantities, the following arrow system is obtained (Table 4.3):

Table 4.3. Tonti's arrow system notation,

interdependency operator arrow
geometry v vertical
V-
V x
material H horizontal
£
derivalive with respect to time 2 perpendicular 10 malerial
g and geometrical arrow

Fig. 4.6. Maxwell equations in Tonti's arrow notation for a) the magnetic field
and b) the electric field.
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The strong equivalence of the electric and magnetic fields is obvious
using this notion (Fig. 4.6). The magnetic flux density B and the electric
flux density D connect both field types. This results in the diagram of
Tonti for the electro-magnetic field (Fig. 4.7) (Bossavit'®).

Fig. 4.7. a) Tonti's diagram for the electro magnetic field, b) by considering
Ohm’s law.

If conducting material is assumed, the dependency of electrical field
strength and current density can be considered in the diagram of Tonti
directly by Ohm’s law (Fig. 4.7)

J=ckF . (4.53)

This equation, and respectively its arrow, represents the time
independent current from eq.(ii), (3.27).

For ideal conductors we have the zero divergence condition, and
therefore it can be written:

v-J=0 . (4.54)

To complete the diagrams, the defined potentials can be added to it
as indicated (Fig. 4.8).

v

Fig. 4.8. Diagram of Tonti with potential definitions.



5 Field computation and numerical techniques

We consider that a variational principle or a boundary problem can
describe a given physical-technical problem. Thus, this field problem is
given by a differential equation. The problem is now to find a feasible
solution of this differential equation.

Fig. 5.1 shows the various possibilities for solving genecral field
problems. The methods applicable for use can be divided into two
general classes, analytical and numerical methods. Methods which are
based on simplified analytical models are called semi-numerical.

methods of analysis
anglylical methods numerical methods i
exact methods: approximalions; numerical solution B finite or discrele :
: element methods 3
0" i P ey == o T '

+ separation of « RAYLEIGH-RITZ NG
vaniables = GALERKIN
«LAPLACE methods

transformalions

numerical finile
inlegration | dilTerences |3
——— e

roer ey

Fig, 5.1. General field analysis.

When compared to numerical techniques, analytical methods have
the opportunity to deliver the exact solution of the differential equation.
Those approaches, separation of the variables and Laplace
transformations or other methods, can be applied to geometrically simple
problem formulations only. Analytical approximations are suitable where
the problem itself is very well known so that it is possible to apply
appropriate simplifications. The entire above-mentioned reasons limit the
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general application range for analytical methods. They are very suitable
for specific problems. If an analytical approach is applicable, the solution
is obtained in a rather short time; this is another great advantage of the
analytical techniques when compared to the numerical methods.

Numerical integration, Runge-Kutta, Euler and other techniques can
obtain direct solutions from systems of partial differential equations. The
finite difference method computes the solution by applying Taylor series
to approximate the field quantities in points of a mesh grid covering the
domain of interest. The finite element approach belongs to the discrete
methods and will be the topic of the following chapters. The discrete
element methods have the ability to be used in general applications.
Therefore, different types of problems can be solved by the same
method. They can be solved employing the same numerical structure.

To solve a technical field problem numerically, an appropriate
method has to be chosen. The most important methods are listed here:

e finite element method (FEM)
o finite difference method (FDM)
¢ boundary element method (BEM)
e magnetic equivalent circuit (MEC)
 point mirroring method (PMM).
Table 5.1. Numerical field computation methods.
method principle of geometry non-{inearites computational costs
discretisation approximation
FEM N extremely flexible possible high
X
e -
FDM inflexible possible high
BEM /’—> exiremely flexible troublesome high
.
MEC specific geometries possible very low
t
PMM m, *a simple¢ geomelries by constant low
TR o
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Today, the FEM is a well known method and is commonly used for
electromagnetic field problems. The two most popular methods for
deriving the finite element equations are the variational and the Galerkin
approach, being a special case of the method of weighted residuals. For a
two-dimensional analysis, the domain of interest is discretised into a
number of simple triangular or rectangular elements, the finite elements,
with homogenous properties. For three-dimensional problems, tetrahedra
or other simple volume elements are used. The potential function is
approximated in those finite elements by simple shape functions, mainly
linear or quadratic. This results in a large linear system of equations.
Saturation effects can be considered easily. Using triangular elements for
two-dimensional field problems and tetrahedra in three dimensions, a
very good approximation of the geometry is obtained. The FEM is the
most flexible method when compared to all the other techniques listed in
Table 5.1.

Historically the FDM is the oldest method. Here, the domain of
interest is discretised by a grid with discrete points. The differential
equation of the particular field problem is locally transferred into a
difference equation. This leads to a linear system of equations to be
solved. The solution at the grid points approximates the field.

Due to the discretisation of the domain by a grid, in xy or polar co-
ordinates, this method is in some cases troublesome in accurately
approximating the geometry (Table 5.1). A local grid refinement to
increase the solution accuracy can not be obtained in an efficient way.
Non-linearities can easily be implemented using Newton iteration
schemes. A three dimensional FDM is possible under the same
restrictions as mentioned before. The FDM lost its importance and is
nowadays used for problems in the time domain only and is still popular
in fluid dynamics.

Using a particular approach at the boundaries of a field domain
including the solution of the fundamental system (Green functions) of the
partial differential equation represents the basic idea of the BEM. Using
this connection, only the boundaries of the region of interest are
discretised. Due to this discretisation the geometry of a domain can be
approximated very accurately. The coefficient matrix of the BEM is, in
contrast to the FDM and FEM, completely filled, non-symmetric and not
positive definite. Therefore, special solvers have to be used for the
resulting system of equations. Non-linearities are very difficult to
account for.

The equivalence of the steady state electrical flow field and
electromagnetic field is exploited in the MEC. This method recommends
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a principal knowledge of the field distribution. Here, the field domain is
discretised by lumped parameter elements, representing the reluctances
and sources of the problem. To obtain a potential at the nodes of this
network, a rather small linear system of equations has to be solved.
Therefore, the MEC is fast. The low level of discretisation, when
compared to the FEM, results in an acceptable accuracy for field
quantities. The computation of forces in electrical machines is
troublesome, as a derivative of the reluctivity is required. Non-linearities
can be implemented easily.

The PMM exploits the analogue formulations of the magnetostatic
and electrostatic field problems. The PMM has its origin in analytical
field calculations. Permanent magnets are considered by magnetic
surface charges and are mirrored at the boundaries of the region of
interest following the rules of the electrostatic field. This method is very
fast, but restricted to very special geometries. Saturation can be
considered by constant permeabilities only. An advantage using this
method is the fact that special problems (3D high voltage transmission
lines, 3D permanent magnet constructions) can be solved relatively easily
and fast, whereas the FEM or other discretisation methods require huge
efforts to define the problem, at high computational costs.

The advantages and disadvantages of the above-mentioned methods
are collected in Table 5.1. In the following section examples are given
for the MEC and PMM to demonstrate their strength in selected problem
classes of the design of electromagnetic devices.

5.1 Magnetic equivalent circuit

advantages disadvaniages

fast simple geometries only

casy to implement flux paths must be known to build up the model
non-linearities possible force computalions are troublesome

5.1.1 Computation of field quantities of an electromagnetic
actuator

For the optimisation of magnetic circuits by numerical methods, fast field

computation algorithms are recommended. If the field problem is not too

complicated, the MEC can be employed. Here, the computation of an

actuator with permanent magnets is discussed.

Using the formal equivalence of the electric flow field, the magnetic
field components of an electromagnetic device can be obtained using a
magnetic equivalent circuit. With the rules of the circuit theory, this
model of the electromagnetic circuit is solved. Compared to the finite
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element method, this approach offers the ability to obtain accurate results
with low computational costs. Inherent non-linearity due to the
characteristic of the ferromagnetic parts in the magnetic circuit is
implemented. Non-linearities caused by the relative displacement
between moving parts are implemented as well. Resuits obtained by
simulations are compared with measurements on a small permanent
magnet-excited actuator (Fig. 5.2).

B upe= 1(B) Ow= g M o= ppy

Fig. 5.3. Complete magnetic equivalent circuit.
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A two-pole diametrically magnetised permanent magnet rotor ring is
centred in the stator bore. The two-phase armature winding is arranged in
closed stator slots.

The equivalent magnetic circuit (Fig. 5.3) consists of magnetic
resistors, defined by flux tubes, and flux and/or mmf sources. The
solution of this field problem is the analysis of a non-linear network.

S(x) is the area perpendicular to the direction of the flux @ at the

position x where @ and @, are the magnetic potentials at both ends of the

flux tube. The difference @, —¢@, corresponds to the magnetic voltage
drop along the flux path. The magnetic resistor Ry, for the equivalent

magnetic circuit is

i

R = 2 6.1

A, 5 H(x)S(x)

Since in iron parts of the electromagnetic device the permeability
u(x) is a function of the flux density, the field problem is non-linear.
Permanent magnet material with its demagnetisation characteristic is
included in the equivalent magnetic circuit as well. An evaluation of
Ampere's law leads to the mmf sources modelling the windings in an
electromagnetic device.

To solve the network problem, a node-based method is used,
enabling, when compared with branch-oriented algorithms, a more easy
assembly of the node permeance matrix. The solution of three
dimensional networks is possible as well. As the result of this network
circuit analysis, the potentials at the nodes are obtained. From the known
node potentials, the interesting field quantities can be derived. The
advantages of the method used are:

e direct assembling of the system of equations

o diagonal dominant coefficient matrix

e sparse system

e no restrictions to planar graphs.

3 2 3 4 2
P
A
51\/ A6 k2 3
0 1 o B 1
a) b)

Fig. 5.4. a) Network and b) directed graphs.
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The clearest and most flexible way to describe the structure of a
network is by setting up a graph or mathematical topological matrices.
The topology describes the properties of the network concerning its
structure without considering the properties of the network elements. The
structure is modelled by a directed graph (Fig. 5.4b). The incidence
matrix A of the directed graph describes the topology of the network. Its
columns indicate the branch number and its'rows the node number. The
elements of

a, A4y a,
ay A4n 4

A= 2 . F (5.2)
a, 4y a,

are
1:if branch j is directed away from node i

a, =<—1:if branch j is directed to node i (5.3)

]
0 : branch j is not incident with node i
The subscript & denotes the number of nodes and z the number of
branches,
After introducing the vectors, ®, modelling the flux and @, giving
the mmf sources in the network, and with the diagonal matrix D
representing the branch permeances, the complete system of equations is
ADA'¢= A(®,-DO,) . (5.4)
In (5.4) the vector ¢ contains the required node potentials for

further consideration. The system (5.4) can be solved either by direct or
by iterative methods.

The network of a magnetic equivalent circuit consists mainly of
non-linear elements where the permeance of a flux tube depends via the
permeability p on the flux density. Therefore, the flux density B as a
function of field strength H of such elements must be given and
incorporated into the solution process. The Newton algorithm obtains the
iterative solution. The iteration instruction for iteration step (k+1) is

#" = 4 - ) @), (5.5)
where ¢ represents the solution vector containing the node potentials
from iteration step k , J(¢#") is the Jacobi matrix and F(¢“) the

fundamental system. To assemble the Jacobi matrix with the term
&B/ JH the given non-linear material characteristic B=f(H) is evaluated
by cubic spline interpolations. This enables the use of the term directly
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because the derivative is already included in the interpolation algorithm
and thus available without additional numerical expenses.

When computing the magnetic field quantities mainly the generated
forces and/or torques of an electromagnetic energy converter is of
interest. The electromagnetic torque of the actuator is calculated using
the energy principles according to virtual work.

Computations with increasing winding currents are performed to
verify the accuracy of the magnetic equivalent circuit model at different
saturation levels inside the iron parts. Fig. 5.5 shows a very good
agreement between the methods. For the computed and measured torque
versus position, a good agreement is found as well.

The computation time to solve the non-linear magnetic equivalent
circuit with 210 elements (Fig. 5.3) is of the order of seconds.

/ vl
/ E
o 50 100 130 200 230 Crad 330 FEM

a —

Fig. 5.5. Air gap flux density with different winding currents.

5.2 Point mirroring method

advantapges disadvantages

relatively fast non-linearities only considered by constant
factors

3D fields special peometries only

special boundary conditions have to be assumed

To demonstrate the strength and shortcomings of this method, on the
other hand, two examples are worked out. In the first example a
ferromagnetic circuit is calculated. The main limitations in this example
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are seen in the assumption that the iron circuit is piecewise constant
saturated. In contrast to this shortcoming, the geometry of the disc-type
motor is rather complicated and requires a three-dimensional calculation
of the field. The assumption of a plane mirror surface can be seen as a
very strong boundary condition thus limiting the application range.
Therefore, no slots are allowed in this type of model. An air gap winding
is recommended in order to be able to compute the air gap field in this
machine.

The second example, a high voltage transmission line, is due to the
slag of the line, an inherently three-dimensional field problem as well,
but in this case linear. The assumption of a plane mirror surface, the
ground plane below the line, is here the strong limitation. As a
consequence, the field can not be calculated in a hilly neighbourhood.
Nevertheless, measurements and computations are in good agreement.

5.2.1 Computation of the field quantities of a disc-type motor

In this section the basic ideas of the method of point mirroring are given.
With a relatively small amount of computation time the field quantities
of very complicated geometries can be studied. The method permits
three-dimensional magnet field calculations. Here, the method is used to
calculate the flux distribution of a disc type motor. The rotor of the motor
consists of a NdFeB permanent magnet ring. An air gap armature
winding is fixed to the stator. Fig. 5.6 shows the construction of the

motor,
1 distance bolt
2 guard ring
2 3 magnet
| 4 back iron
: 5 position bush
i l 6 distance bush
1 7 shaft
. B bearing guard
9 bearing
10 bearing cap
11 yoke holder
12 armature winding
13 winding holder
. g 14 guard ring
| : 15 bearing
- 16 plate enchor
) I ¥ 17 coil end-winding

Aol

¥ é 8 15 14

Fig. 5.6. Construction of the studied disc type motor (Hanitsch et al.*%).
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Four poles (2p=4) are axially magnetised on both rotor magnet
rings. The used magnet material is NdFeB. In the case of rare earth
material, the assumption of a straight-lined characteristic of the
demagnetisation curve of the magnet material is realistic. In the operating
range of the magnet, the magnetisation is almost independent of the
demagnetising field strength.

The magnetisation of a volume is the sum of all dipole moments m;
divided by the volume v. Two different computational models,
respectively representations for the magnetisation M are possible:

o distributed currents (Fig. 5.7),
e distributed magnetic charge (Fig. 5.8).

The magnetisation is the effect of all elemental currents inside a
magnetic medium. The circulating current of one dipole cancels the
current of the neighbouring dipole, if the dipoles are parallel and have
the same magnitude. If, further, all dipole moments are uniformly
distributed throughout the volume, all volume currents 7, vanish except
the current at the surface, the surface current density Z; (Fig. 5.7). In this
model, the distribution of magnetic dipole moments is equivalent to the
distribution of currents at the surface of a magnetic medium and within
the volume.

With the Maxwell equations the static magnetic field can be
expressed as a solenoid field of flux density and the curl of the magnetic

I =Mxn
I,=VxM

Fig. 5.7. Magnetic magnetisation M with current model.
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field strength:
V-B=0

VxH=J .

Under the assumption of no field exciting currents inside the
permanent magnets, it can be written:

VxH=0 . . (5.7)

With vanishing Vx H =0 formally the magnetic field strength can
be described as a gradient field of a scalar potential function.

~Vep,=H . (5.8)

Using the demagnetisation characteristic of permanent magnet
material B = g (H + M) it can be formulated

(5.6)

V-B=pu,(V-H+V-M)=0 (5.9)
yielding
V-M=-V-H=V-Vgp_=Ap, . (5.10)

Formally V-M=Ag,_ is appropriate to the Poisson-differential
equation of the electrostatic field. Analogous to the electric space-charge
density and to the electric surface charge an auxiliary magnetic quantity
can be defined.

g, =-V-M . (5.11)

With known inner magnetisation M of the magnet, the divergence
of the magnetisation can be identified as an auxiliary magnetic surface
charge o, .

A jL+M- n
+ 5

Fig. 5.8. Permanent magnet shape with auxiliary magnetic surface charge.

As shown in Fig. 5.8 for the upper pole surface, this yields
-V-M=-n(-M)=M, |, (5.12)
and for the lower pole surface
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-V-M=-aM)=-M, . (5.13)
In this consideration, the laws of electrostatic field can be used to
evaluate the scalar potential @,,(P) and magnetic field strength H(P) in a

point P. Integration is performed over the surface of the north Ay and the
south pole surface As

p.(P)=x Hﬁdh £ II
(5.14)

H(P)=

[

To determine the ﬂux densnty of the ring-formed permanent rotor of
the mentioned disc-type motor, the ring is subdivided into trapezoidal
single magnet elements (Fig. 5.9).

NI

9
Fig. 5.9. Permanent magnet ring (Walkhoff ''®).

The superposition of elementary and simple magnet shapes is
performed in order to form a complicated-shape permanent magnet.
Here, the superposition of the field components of cubed and triangle
magnet elements result in the required trapezoidal magnet as indicated in
Fig. 5.10. The magnetic field excited by the permanent magnet ring can
now be calculated at every point P outside the magnet volume.
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To consider the ferromagnetic back iron inside the real machine, the
magnetic surface charges have to be mirrored at the boundaries of the air
gap. The laws governing the electrostatic field can be used here. A mirror
interval of 4 to 5 steps is sufficient to obtain an acceptable accuracy
(Walkhoff ''%).

Fig. 5.10. Superposition of cube and triangle to obtain a trapezoidal shaped
magnet.

With these considerations, the auxiliary configuration for the
calculation of the air gap field of the disc-shaped motor, using the point
mirroring method, can be constructed (Fig. 5.11).

(O™ '-“2@ “3@

Z )

Fig. 5.11, Auxiliary configuration and co-ordinate system (Walkhoff ''*).
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Mirroring the mentioned surface charges is done at the material
boundaries having permeabilities y and gz (Fig. 5.11). Saturation is
considered by the constant factors.

The z-component of the resulting flux density distribution of a pole
pitch of the mentioned disc-type motor can be taken from Fig, 5.12.

a,:’-j I ,, !.; ,’.'.', AR \\\\\.

ol /’“ {' '"\\Q\\Q\}

o ,,l // """,

| L ’:’,{f, ”mm \\\ \\\ w
il &
ol ’ \\\ 4

40"
Fig. 5.12. Three-dimensional air gap flux density distribution (Walkhoff ''*).

5.2.2 Computation of the fields below AC high voltage lines
Overhead transmission lines generate in their vicinity electric and
magnetic fields. The source of the magnetic field is the current in the
phase conductors. The electric field is caused by the high potential at the
phase conductors.

The problem specifies small diameter conductors above a large flat
conducting ground plane. The phase conductors are at a time-dependent
specified electrical potential and carry a time-dependent current. Due to
the slag of the phase conductors, the field problem turns out to be three-
dimensional. Only symmetric three-phase voltage and current systems
are considered. The ground below the transmission line is a uniform
plane.

The field problem may be considered as quasi static. Therefore, the
solution can be determined by static techniques. With respect to the slag
of the phase conductors, infinitesimally thin, segmented filaments
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approximate the geometry of a single conductor. Due to the symmetry
between two poles, one half of the arrangement is drawn in Fig. 5.13
only. The value of s indicates the slag, / is the distance between the two
high voltage poles, the span field length.

%k 2 —
Fig. 5.13. Geometric modelling of a conductor.

52.2.1 [Electric field The electric field is computed by mirroring
single line charges at the assumed to be ideal conducting ground plane
below the phase conductors. Each infinitesimally thin filament segment
represents in this case a line-charge. A constant line-charge at any
position in the original co-ordinate system (x, y, z) is drawn in Fig, 5.14.
To evaluate the field quantities of the line-charge, this co-ordinate system
has to be transformed into a system (X,y,Z). This transformation is
performed in two steps. The first step consists of a parallel shift of the
origin into the starting point of the line-charge. In a second step a
rotation of this temporary co-ordinate system (x°, y®,z°) around the x°-
axis is carried out in such a way that the line charge lies in the x°-y°®
plane. The last rotation in this step is around the z°-axis so that the line-
charge lies in the x°-axis. In this co-ordinate system the potential ¢ of the
line-charge in the point P(X, 7,7 is given by:

o(.5.5)=—L_In I-F 47+ +(-%)

= 5.15
dnde XX+ F T (.15
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Fig. 5.14. Co-ordinate transformation of an infinitesimally thin filament segment.

To evaluate the field quantities with respect to this boundary
condition, the line-charge has to be mirrored with respect to the plane x-
y. Superposition of line-charge ¢ and mirror-charge -¢, indicated in Fig.
5.14, gives the potential ¢ at the point P(x,y,z) inside the global co-

ordinate system.
To consider the slag of the conductors, a quadratic approximation is
used. Referring to Fig. 5.13, it can be written as

f(y)=s-(l—%y2] ; (5.16)
I

With the known complex potentials @ of the i conductors and

transforming eq. (5.15) to compute the coefficient matrix A, a linear set
of equations can be formulated.

Agq=p . (5.17)

The solution determines the charge g, of each element of the

conductors. With these values the components of the electrostatic field
strength in the point P(x, ¥, z) can be computed.

E=~V¢={%e,+%e,+%e,) ; (5.18)
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Fig. 5.15. Convergence of the simulation with respect to the slag of the high-
tension line.

To illustrate the convergence behaviour of the method, attention
should be paid to Fig. 5.15. With an increasing number of infinitesimally
thin filament segments for one half of the span field, the electrostatic
field strength converges to the correct value. Calculations with 5...7
polygon elements deliver results with a reasonable accuracy at acceptable
computational costs.

52.22 Magnetic field The magpetic field problem is considered to be
linear. Hence, the superposition of partial fields, calculated with the Biot-
Savart law, result in the overall three-dimensional field distribution
below the line.

In this case each segment of the infinitesimally-thin filament (Fig.
5.14) carries a current i(7). The generated flux density of this part of the
conductor is

|@B|=—2e—.i(t)-dl -sina . (5.19)
4rr

The point where the flux density has to be calculated has to be
transformed into the co-ordinate system (X,y,Z). After integrating eq.

(5.19) the flux density is calculated with
- I-X X
B |=—--i(1)- + ; 5.20
B =y i (J(Z—"x‘)’+r' Jsz*w) atd
If n is the number of current carrying conductors, superposition of
the individual flux densities results in the overall flux density:

B=YB, . (5.21)
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52.23 Finite element model The second numerical field
computation method able to compute solutions in this problem class is
the finite element method. Special boundary conditions applied to the
field problem result in an effective use of this method. The application of
open boundary conditions gives the opportunity to discretise the field
problem in regions of interest only. This results in lower computational
costs. With respect to the computational efforts, only two-dimensional
computations are performed with this numerical method.

Fig. 5.16. Open boundary model to compute the electric field of a 150 kV AC
single system transmission line. (the triangulation of the domain is invisible)

A cross-section of the transmission line is made at the place where
the wires are nearest to ground level (Fig. 5.16). Here, the highest field
values are expected. A two-dimensional finite element model
perpendicular to the line is built. The region of the cross-section is
subdivided in triangular finite elements (Fig. 5.17). The potential
distribution over each element is approximated by a polynomial. Instead
of solving the field equations directly, the principle of minimum potential
energy is used to obtain the potential distribution over the whole model.
The ratio of the largest size of a finite element to the smallest size in the
model of a transmission line is about 10,000. The circular boundary of
the model has a radius of about 100m, while the radius of the conductors
is a few centimetres. Therefore, special attention must be paid to obtain a
regular mesh with well-shaped elements, ensuring an accurate solution of
the field problem. Thus, a high degree of discretisation resulting in a
large system of equations must be applied. Fig. 5.17 shows a part of the
finite element model around one of the phase conductors. The change in
the size of the elements in the direction away from a conductor can be
noticed (Fig. 5.17).

When computing the electric field strength, it is assumed that the
ground plane below the transmission line is an equipotential surface,
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Therefore it is not necessary to discretise the ground as indicated in Fig,
5.16. In contrast, in the magnetic field model the ground has the same
magnetic properties as the surrounding air and has to be discretised as
well. This results in an increased number of finite elements and thus in
higher computational costs.

In contrast fo the semi-numerical method, where the phase
conductors are modelled taking only a few seconds to compute the field
quantities, the calculation time of one transmission line on a PC-486
platform using the finite element method is about 30 minutes.
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Fig. 5.17. Part of the finite element model around a single phase conductor.

5.2.2.4 Measurements The measurement of the electric field strength
excited by the transmission line are based on the induced current of the
charge oscillations between two halves of an isolated conductive body.

The measurements of the magnetic field strength are based on the
electromotive force induced in a coil. Therefore, the probe of the field
meter, Holaday Industries model HI-3604, consists both of two circular
isolated parallel plates and of a circular coil. To avoid perturbations of
the electric field, a fibre optic receiver and a non-conductive tripod to
support the field meter are used. Only the rms value of the space
component perpendicular to the plane of the probe is measured. The field
quantities below the overhead transmission lines are measured at a height
of 1m above ground level.

52.2.5 Numerical and experimental results All computations and
measurements on a Belgian 150kV AC single three-phase system
transmission line are performed at the place of the maximum slag.
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Because the transmission line is situated in a flat area in Belgium, the
ground level is assumed to be even.

To obtain the local field values with reasonable accuracy, a third
order finite element solution is necessary. The use of shape functions of
third order explains the long computation time. Fig. 5.18 shows the x-
and z-component of the mms value of the magnetic field. Good agreement
between the measurements and computed data can be stated. The two-
dimensional approach overestimates both x- and z-component of the
magnetic field. The reason for this lies in the type of approximation of
the geometry of the transmission line. In the two-dimensional model a
phase conductor of infinite length with constant height above the ground
is considered. Therefore, the two-dimensional approach represents the
worst case, i.e. the highest values of field strength.
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Fig. 5.18. Comparison of computed magnetic field distribution and measured
data 1m above ground a) x-component and b) z-component.

Fig. 5.19 shows the effective value of the z-component of the
electric field. The calculations and the measurements show good
agreement.
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Fig. 5.19. Comparison of computed electric field distribution with measured data
im above ground level.
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In Fig. 5.20 the three-dimensional electric field distribution below
the 150 kV ac transmission line obtained by the PMM method is plotted.
The geometrical model of the single phase conductors consists of seven
polygon elements per half of the overall span field. The high-voltage pole
is located at the global co-ordinates x=0m and y=220m.

As expected, the maximum field values are found in the middle of
the field span at the co-ordinates y= Om. Here, the values of the electric
field strength are in the range of 4 kV/m and thus well below the
maximum allowed exposure values for the general public, given by the
standards in Table 5.2.

ns T ! R .,

o
o

fiold strength (kY 4 m)
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Fig. 5.20. Electric field distribution below the 150 kV AC high-voltage line
computed by the point mirroring method.

Referring to Fig. 5.18, the magnetic flux density of the x- and z-
component, generated by the current carrying conductors, are in the
range of 0.4-0.6 uT. According to Table 5.2 those values of the magnetic
flux density are far below the allowed limits as well.

Due to the linearity of the problem formulation, calculations of
power lines with different types of AC-high-voltage poles carrying
multiple three-phase voltage and current systems can be performed. In
this case the field components generated by the single systems have to be
superposed according to the relative phase angle between the systems
and the considered instant of time. Fig. 5.21 shows the results, computed
by the semi-numerical technique, of a high-voltage transmission line
consisting of six three-phase systems with different voltage level (2x380
kV, 2x220 kV, 2x110 kV). For the magnetic flux density it is assumed
that each system carries a current of 1000 A. The system with the largest
transmission voltage is put at the top of the pole, while the system with
the lowest voltage is located below it.
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Fig. 5.21. a) High-voltage pole construction carrying 6 systems (2x380 kV,
2x220 kV, 2x110 kV) and b) the resulting electric field distribution. (All the
three-phase current systems carry a rms. current of 1000 A; the pole is located at
the co-ordinate x=0m, y=160m.)

52.2.6 Comparison of PMM and FEM Two efficient methods of
computing the electric and magnetic fields below AC-high-voltage lines
are demonstrated by an example; a Belgian 150 kV AC three-phase
single system transmission line. Both methods, PMM and FEM, are
compared with respect to accuracy and the required computational effort.
To verify the results of the field simulations, measurements of a power
line have been carried out, giving good agreement between computed and
measured data.

In the PMM meodel, infinitesimally thin segmented filaments of
constant charge or current are approximating the slag of the transmission
line to solve the electrostatic and magnetic fields. With reasonable
accuracy a three dimensional field distribution can be computed.
Relatively low computation times are necessary to compute the three-
dimensional field distribution below the power line with the PMM.
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Using a standard PC-486/66, the calculation time lies in the range of
seconds.

With the finite element method, the distribution of both electric and
magnetic field quantities, is computed as well. With respect to the high
computational costs when compared to the PMM, a two-dimensional
approach in the middle of the span field is chosen. Due to the necessary
high discretisation of the problem, the computational costs are in the
range of thirty minutes using a PC-486/66. Good agreement between
measured data on the Belgian 1[50 kV line and calculated field
distributions by both methods can be stated.

The main problem employing the FEM is the small diameter of the
conductors above the large flat conducting ground plane. The difference
between the dimensions of a conductor and the field domain of interest is
huge, the ratio lying in the range of some 10°. This causes the generation
of a large amount of finite elements and thus an enormous computation
time, even for the two-dimensional problem, when compared to the
efforts necessary for the PMM. A three-dimensional FEM model is
difficult to build, due to this huge difference in geometrical dimensions.

This example demonstrates that for problem types, such as the high
voltage line, the FEM is not very well suited. In this case, the approach
using the PMM is the better choice with respect to computational time,
problem dimension (2D/3D) and discretisation problems.

5.2.2.7 [Effects of fields with low frequency To evaluate the
influence of the transmission line, it is not sufficient to calculate the
coupling impedances or capacitances of the line. It is necessary to
analyse the actually generated fields in the neighbourhood of the
transmission line during the planning phase and to check if given
standards for maximum field values are violated.

The interaction of electromagnetic fields with living organisms can
be separated into two mechanisms, thermal and non-thermal interactions.
Thermal interactions mean the mechanism of the absorption of
electromagnetic energy resulting in an increasing temperature. Non-
thermal are these interactions where the absorbed energy is not large
enough to cause a significant temperature rise. In fields at low frequency,
the body does not absorb or negligibly absorbs the wave energy. This
implies that biological effects caused by electric or magnetic fields of
low frequency fields are non-thermal. Observed non-thermal effects on
human beings can be the stimulation of nerves, upright standing skin
hair, visual disturbances ... . The possible results of these effects may
depend on the field characteristics which vary in intensity and frequency.
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To judge the mentioned effects, existing technical standards supply the
quantities of the electric, magnetic and electromagnetic fields as a
function of the frequency. This is important, as the interaction of
electromagnetic fields and matter strongly depends on the frequency of
the considered field.

Nowadays an increasing sensitivity to ecological problems can be
stated. An injurious influence to the health of human beings caused by
the direct effect of low frequency electromagnetic fields (50/60 Hz) is
scientifically not proven yet. For about twenty-five years research efforts
to find a correlation mechanism between the field quantities and their
effects on human beings have been going on, without significant success.
In this situation, the electric and magnetic field quantities of high-voltage
lines have to be examined in order to avoid EMC problems with the
environment close to the power transmission line while planning high
voltage lines.

A number of standards such as those in preparation by the European
Committee for Electrotechnical Standardisation (CENELEC) are based
on the known effects for short exposure times. Long term effects are not
considered. However, to consider possible as yet undiscovered effects the
values for technical fields are reduced by a factor. In Table 5.2 the
maximum exposure values for the electric and magnetic field are
summarised. The values are distinguished according to the general public
and professional workers.

Table 5.2. Maximum exposure values for the electric and magnetic field

(ICNIRP).
CXposure electric field strength £ magnetic flux density B
kV/m (rms) mT (rms)
professionals:
8 hours 10 05
general public:
S 0,1

source: Health and Physics, Aprif 1998, Vol.74, No. 4

5.3 The numerical solution of partial differential equations

Solving a differential equation analytically or by semi-numerical
techniques, as demonstrated before, is only possible assuming
simplifications in the differential equations that are valid in a domain that
can be described in a plain mathematical way. Specific boundary
conditions and various material properties in different domains make it
difficult to obtain an analytical solution for problems of technical
importance.
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The numerical approximation methods (Table 5.1) of solving the
introduced partial differential equations are not limited to such specific
geometries or other rough simplifications and can handle different
material characteristics with an acceptable accuracy in a single model.
The two most important groups of numerical methods are the finite
difference method and the projection methods.

The finite element method nowadays is the most important and most
frequently used approach solving variational problems and differential
equations in engineering. The most significant success of this method is
founded in the possibility to develop on its base user-friendly computer
programs of general application range. Due to its structured rules this is
closely linked to the opportunity of the FEM to generate stable numerical
schemes for considering complicated two- and three-dimensional
geometries in a relatively simple way.

| discrete methods ]

v v

| FDM | [ FEM,projection methods |

| weighted residuals | | Reyleigh-Ritz |
Y
| Galerkin l lmethod of momenis|

Fig. 5.22. Overview of various numerical methods.

5.4 Finite difference method

The field domain of interest is discretised by a grid, where the grid-lines
are in parallel to the co-ordinate axes. This type of mesh is called an
orthogonal grid and must not consist of equidistant grid-points (Fig.
5.23). The grid-distances hg, hs, hw and hy can be different.

a 11
4
hwohN
+
hs’ i

Fig. 5.23. Numerical discretisation for the FDM.
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Fig. 5.24. Approximation of the potential distribution by a Taylor series.

The potential distribution over the studied domain is approximated
by the first terms of a Taylor series (Fig. 5.24):

fa+d)- fE) =T 0 (522)

The differential equation of the particular field problem is locally
transferred into a difference equation. For example, calculating the value
of a potential distribution at point 0, by using the 4-point approach (Fig.
5.23), and a grid distance d with a derivative

af . flx+d)-f(x)
e "l.l.'..“—d (5.23)

is expressed by a finite difference with a known approximation error
n(x) . By considering only the first terms of the Taylor series, this error

is known and dependent on the grid distance.

Forward,
Of S -F®) ey (5.24)
x d
backward
af _fx)-flx-d) .
i I m— x (5.25)

and ceniral difference

Of _ fx+d)-f(x-d)
ox 2d

+1(x) (5.26)

are used to assemble a system of linear equations to calculate the
potentials at all grid points. This leads to a large linear system of
equations to be solved. The potentials at the mesh points represent the
approximated field solution, To obtain an accurate field solution a fine
discretisation is required.
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5.5 Finite element method

In general, differential equations are hard to solve. The idea is to find a
solution for the overall problem by substituting for the complicated
problem a series of simpler ones. This means setting up the problem by a
easily-solved linear system of equations.

Therefore, the problem has to be discretised in adequate sub-
problems. The sub-problems are geometrically described by
geometrically simple shaped elements such as triangles (Fig. 5.25) or
rectangles for two-dimensional and mainly tetrahedrons for three-
dimensional problems. Other element shapes are possible as well. When
comparing the meshes from the FDM and the FEM model in Fig. 5.23, it
is obvious that the FEM model approximates better the geometry of the
studied domain. A necessary local mesh adaptation is possible in this

model as well.

IS

Fig. 5.25. Minimal triangular discretisation of a two-dimensional finite element
model.

These elements, forming the numerical discretisation, the mesh, are
called the finite elements. On this discretisation, the problem describing
differential equation is locally approximated by simple basis function.
The approximated overall solution is obtained by assembling all sub-
problems into a system of equations and solving this. After this
procedure, the approximated potential solution is known in certain points
of the discretisation.

The problem is to determine the field describing potential functions
for the discrete problem, the finite element equations, and to define an
adequate basis or shape function to be able to assemble the overall system
of equations. Different methods can be used to determine the finite
element equation from the differential equation (Fig, 5.26).

If for particular field problems a variational principle is known, the
discrete problem can be obtained by using the Ritz method. In this case,
the generation of the discrete problem is easy to obtain. Unfortunately,
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this variational principle is not known for every technical problem. In this
case, for instance, the very common method of the weighted residues can
be applied. The most important finite element methods are:

e various Ritz methods

e variational method

e weighted residual method (weak form of the governing

equations)
o different types of Galerkin method
e approaches based on the energy-minimum functional.

i
variational principle boundary problem ‘E

variational equation |
R SONOY - x et

/7 RITZ /GALERKIN

variational approach integral gauges

RITZ method residue method / integral gauges

p-{ discrete problem
(system of equations) i

SR T

Fig. 5.26. The basic concept of the finite element.

5.5.1 Variational approach

In this section, it is assumed that a variational equation exists for the
studied field problem. Therefore, the generation of the discrete problem is
easy to obtain.

A problem in the form:
Find a function # € V', sothatforall v € V'
a(u,v)=f(v) (5:27)

is called a variational problem.

With a(u,v) is a real value depending on two functions w,v € V,
and V is a set of differentiable functions in the field domain Q with v=0
on the boundary I'. Av) is a linear form on V.

To determine the variational equation, a Poisson equation is chosen
as an example, assuming the appropriate boundary conditions,
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Vu=Au=-q in Q

u=0 on I' .
with the Laplacian
2 2 2
L L (5.28)
& & &

and with ¢ , a given continuous and u , a potential function.
The differential equation is multiplied with an arbitrary function
v eV and integrated over Q to obtain a linear form. It can be written:

~ [(Au)-vdQ = [q-vdQ . (5.29)

The Gauss-integral gauge transfers a volume integral J' into a

23

surface integral .f !

I (ZCP Zf if)dg [Pdydz + Qclzd + Rekxdy

I' is a closed and oriented surface, which includes the domain Q. P,
O, R are functions of three variables defined in Q. The partial derivative

of first order from P, O, R must exist and must be continuous. With the
approach:

Pzé-vzux-v )
ox
ou
O=—wv=u_-v , (5.30)
&
P=@-v=uz-v ;
174

and considering the boundary condition v=0, the right hand side of the
Gauss integral gauge can be written by:
0 0 0

deydz + Qdzdx + Rdxdy = J.ux -/Jziydz +u, fdzdx +u, fdxdy =0 .

(531
To evaluate the left side of the Gauss gauge
P X R
— |(Au)-vdQ = +—=—=+—)dQ , 5.32
Jauy-v f(@c 5 (5.32)
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with the derived functions

0

P_0 Gu M Ou

a aalaax /.

D_0 M M

¥y ¥y &y &

R_D Hu ., G &

x & & & & ’ (5.33)
it can be written:

- [(Aw)-vdQ = j(iﬂﬁa—‘—@»@%dn : (5.34)

a ik&k YN &

With this, the boundary problem described by a Poisson equation is
transferred into a variational equation.
N uN udv

a(u,v)=&[(-g-@—c+55+gg)dﬁ ) (5.35)
fo)=[gqvaQ . (5.36)

5.5.1.1 Discretisation of the differential equation The variational
equation a(u,v)= f(v) is applied to the standard example of a Poisson
equation:

&N N Sudv

a(u,v)= ‘I(EE + EE + EE)dQ

£0)= [g-va
Wi, ..., Wy are N independent linear functions out of ¥, and ¥, is the
set of linear combinations ) cw,. ¥} is called the N-dimensional partial

space from ¥, and w; are the basis- or global shape functions (Goering et
al. ¥, Zienkiewicz & Taylor '%).
An approximated solution from a(u,v)= f(v) is a function u, €V,.

The idea now is to find an approximated solution u, , using the linear
combination of the N functions

u = iu,w, (5.37)
with the unknown ;.



Field computation and numerical techniques 79

This yields the formulation of an equivalent problem:

a(uv)=f(v) forall v,eV, . (5.38)

This is a projection of the problem a(uy)= f(v) in ¥V into a
problem in ¥, . If this is true for all u, ¥, and for all w eV, it can be
written:

a(u,w,)=f(w) j=l1ON . - (5.39)

Equations (5.38) and (5.39) are equivalent problems and are called
the discrete problems.

5.5.1.2 Practical considerations Equation (5.38) was the starting point
of the theoretical considerations of the FEM. The initial position for the
practical calculation of the approximation u, is eq.(5.39). Using

u, = 2 uw and substituting in the discrete problem,

aSu -ww)=fw) j=ION , (5.40)
assuming a being a bi-linear form it can be written:
Saww)u=f  j=ION . (5.41)

This represents a system of N equations with the N unknown #; and
the coefficient matrix Ay,

\ 9., 2y )
(5.42)

with a, =a(w,w)
The discrete problem corresponds to a system of equations. Using

the shape functions w; to calculate the elements of the coefficient matrix
a(w,,w,) and the right hand side of f, = f(w,) and solving the system of

equations (5.41) leads to the unknown ;. Evaluating eq.(5.37) gives the

approximation of the problem u, =) uw,. The practical realisation of

the FEM depends strongly on the choice of the shape functions w;. The
basis functions must have some particular properties.



80 Field computation and numerical techniques

5.5.2 Shape or basis function

The definition of the shape or basis functions is not dependent on the
single FEM. The same ideas used to construct the basis functions can be
taken for the weighted residual methods, the Ritz methods, the different
Galerkin approaches, the method using a variational equation and the
energy minimum functional as well. The following ideas are of a general
application.

If the approximation #, from u must be very accurate, the number N
of the basis functions must be very high. This results in a large system of
equations. This is the reason why the basis functions must be chosen in
such a way that the coefficient matrix A, contains as much as possible of
zero elements. The best possibility would be to choose the shape
functions such that Ay, is the unity-matrix. This is not practically possible.

In general g; is an integral over the domain Q of summations of
products of the w; and w; and their derivatives. If the shape functions are
chosen such that they are only in a partial domain €; of Q non-zero and
else equal to zero, the products w;-w; i, j=I(1)N are only for some

combinations of i and j non-zero. This means for a FEM discretisation
that for many / and j , Q; and €; should not have common nodes. This
results in the desired sparse system of equations.
The requirements to be fulfilled by the shape functions are:
e smoothness, piece-wise differentiable
e additional properties resulting from the boundary conditions
must be satisfied
e the shape functions should be simple
a good approximation w, from u should be obtained.

5.5.2.1 Construction of the basis functions To construct a useful shape
function, (Goering et al. ) the unit square (Fig. 5.27) is discretised into
partial squares with the co-ordinates x,=vh and y, 6 = uh with v,
p=1(1)M-1 and MA=1 .

y
T

o
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W A2 Th

X

% h—i

Fig. 5.27. Unit square with triangular FEM discretisation.
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In this example, triangular-shaped elements are assumed, and so
every partial square is represented by two triangular elements (Fig. 5.27).
Vi is the (M —1)’ =N -dimensional space characterised by a linear

function in x and y inside each triangle.
The shape functions w_(x,y) in ¥, are chosen in such a way that

one node of the triangle has the function valye 1 and the other two nodes
a zero value (Fig. 5.28):

1 fi k=v, I=
weey)={ o A (5.43)

0 else .
Therefore, it is
w (x»)=0, if(x,y)eQ . (5.44)

A
Yp
)'y-—l

X
Xy—1 Xp

Fig. 5.28. Simple linear shape function w_(x, ).

Q,, is the desired partial domain in which w,, is non-zero (Fig.
5.28).
For example triangle 1 can be written:

1l X=X, Y=y,
w,=410, x=x_,, y=y, (5.45)
0, =x=x, y=y,
Now the shape functions from the triangles 1, 2, ..., 6 are considered
together. If the linear function
w_=d, +dx+dy (5.46)
is applied, the requirements for the triangular regions (5.45) resuit in a
system of equations.
l=d,+dx, +d,y, |,
0=d,+dx,_+dy,, , (5.47)
0=d,+dx, +d,y,,
In terms of matrix representation:
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». (4.} (!

1 x
1 x, y.||4 =0 : (5.48)
1 x, y.,j\4 0

v 1

The solution of this system of equations yields d,=0 , d;=1/h and
dy=1-p . The value of the shape function for all triangles can be given by:

1+ (% - 1) triangle]

1-(%-v)+(%-- i)  riangle2

1- (i ~v) triangle3
w,=4 " (5.49)
1- (% - 1) ‘triangle 4
I+ (% -v)- (% -4)  triangle5
1+ (-;—i -v) triangle6 .

Fig. 5.29 illustrates the properties of the shape function introduced.
Wy, is a simple linear shape function with the desired properties. It fulfils
the conditions

fw, w,dQ=0 iffy—k>1 or |u-I>1 (5.50)
to generate a sparse overall coefficient matrix.

y

X
Xy

Fig. 5.29. Properties of the approximation applying linear shape functions.

Various basis functions of higher order such as quadratic, cubic etc.
are possible and in common use, for example

linear:

w_=d +dx+dy (5.51)

quadratic:

w =d, +dx+dy+dx +dy +dxy etc. (5.52)
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The degree of freedom (DOF) per finite element for a chosen basis

function can be determined by (Kost *):
polynomial DOFxp DOFyp
degree of p
(p+1Xp+2) {(p+(p+2)(p+3)
2 t 6
1 3 4
2 6 10
3 10 20
4 15 35
5 21 56

Using polynomials of higher order generates a more accurate
approximation of the exact solution. The DOF increases with rising order
of the polynomial and this means that the computational expenses are
increasing as well.

From the properties of the basis functions, general conclusions on
the properties of the mesh discretising the domain Q can be given. A
mesh must consist of:

* non-overlapping elements

e nodes, corresponding to the nodes of an adjacent element (for

node elements).

— 7

not corresponding node
) b)

Fig. 5.30. a) Regular and b) not regular triangular element mesh.

5.5.3 Basic principle of the FEM
Three steps determine the basic principle of the FEM:
¢ Choose N shape functions w; such that w; is only in a partial
region €; from the domain Q non-zero.
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e Calculate the a; and f and solve the system of equations to

obtain #; .
Sa u=f FION (5.53)
-M The approximated solution from a(u,v)= f(v) is
u, = Zu,w, . (5.54)

554 Weighted residuals
With the exact solution u of a boundary problem it can be written
a(uy)-f(v)=0 . (5.55)

The solution of the problem obtained by an approximation

u, = iu,w, is not exact and we must consider a residual R.

a(uy)-f(v)=R . (5.56)
Assuming that the basis functions w; satisfy the boundary
conditions, in the example it was v=0 on I', the N unknown can be
determined by choosing N points inside the domain €. For these points,
the residuum is forced to be zero. Out of this, N equations to determine u;
are obtained. This method is called the point-collocation method (Binns

etal. ).
A better approximation is obtained by averaging with an arbitrary

function @, over the domain of interest Q.
[ta(u, @) - f(@))-dQ2= [Rw,-dQ=0 . (5.57)
n o]

Transferred to the example of a Poisson equation Aw=-g, this
method yields:
[(Au, + g)w,-dQ= [Rw,-dQ=0 . (5.58)

The method is called the method of weighted residuals.
Various weighting functions are in common use. Using, for example, the
Dirac-Delta function for @, results in the point-collocation method as a
special case of the method of the weighted residuals. Usually linear
weighting functions are chosen. They are easier to implement when
compared to higher order functions and already deliver a sufficiently

accurate approximation.
By choosing the shape functions, introduced in the last section, to be

the weighting functions,

W= o, (5.59)
we obtain the local Galerkin method. The combination of weighted
residuals and Galerkin method is universal applicable.



Field computation and numerical techniques 85

5.5.4.1 Continuity Particular attention must be paid to the choice of
basis function where the second derivative is present in the differential
equation. This might cause difficulties with the integral at element
boundaries. To avoid singular integrands, a continuous function must be
chosen with continuous first derivative. This leads to the requirement of a
defined continuity for the form functions.

If only the continuity of the linear form function is required, we
have a C’-continuity.

a’"u(x, ¥, z)
on

is continuous on the element’s boundaries.

For a function of second order, the derivative at the element’s
boundary is continuous (Fig. 5.31). If in general C*-continuity is required
it can be written:

(5.60)

74 'u(x, Vs z)
on
Utx) Ulx)

(5.61)

L

\
]

]
14
J
.

a) b)

Fig. 5.31. a) C"- and b) C' continuity for the solution u(x) considered at the
boundary from finite element el and e2.

5.5.4.2 Green’s formula We have seen so far that we would need a C'
continuity for the basis functions to solve the example of a Poisson
equation. It is desirable to have simple linear basis functions with C°
continuity. Applying the first Green’s formula:

- r2o.ar- :
JPAQ-dQ- rJ‘Pang dr njvpvg s (5.62)

removes the second derivative in the equation and yields for:
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fo.pu,-dQ = (o, %u_ dl' - (Vo Vu,-dQ . (5.63)

This leads to the weak form of the Poisson equation. Weak form
means that weak requirements concerning the continuity are demanded
on their solution when compared to the solution of the previous
differential equation. Therefore, the form of the previous differential
equation is called strong,

[(Aau, + g)w,-dQ = (Vo Vu, - dQ- [wg-dQ- jm,%u, dl =0 . (5.64)

As desired, a C° continuity of the basis function is now sufficient to
solve the problem. A little disadvantage of this approach is the fact that
now the weighting function @ must have C° continuity as well. Constant
weighting functions are not possible with this approach. The use of the
first Green’s formula reduces the continuity requirements of the basis
functions but increases efforts concerning the weighting functions.

It is obvious from this approach, that the solution of the strong form
is always a solution of the weak form. The other way around, this does
not always hold.

5.5.5 Energy-minimum functional

The principle of minimum energy requires that the potential distribution
corresponds to the minimum of stored field energy. For several
electrotechnical problems, this equivalent minimisation problem is
known.

F(u,):% fa(u,v,) - d0 - [£(3,)-d0 - min. (5.65)
The quantity F(u,)is the total energy of the function u,(x), which

is the sum of the internal energy %J'a(u.,v.)’ -dQ) and the load potential

- I S(v,)-dQ. The minimum energy functional yields the same results

obtained by the local Galerkin method (Kost®, Eriksson et al.*®).

5.5.6 Types of clements

The domain of interest can be discretised by various types of finite
elements. In this section the most commonly used element types for two-
and three-dimensional FEM meshes will be introduced. It is the aim to
use simple geometries for the elements. Cross-sectional elements such as
triangles, quadrangles and rectangles are used for two-dimensional
models and volume elements such as tetrahedrons and cuboids for the
three-dimensional FEM models.
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Table 5.3. Standard FEM element types.

2D 3D

The outer boundaries of the geometries are mainly approximated by
a polygon. In general ftriangular or tetrahedral shapes can best
approximate such geometries. A complicated geometry can be
approximated by a large number of such simple-shaped elements.

The FEM model can be built up with element types with different
properties. Nodal and edge elements can be distinguished. The most
common types of elements will be briefly introduced in the next section.
For further details on special types such as non-conform elements, please
refer to the literature (Goering et al. *, Eriksson et al. *®, Kost **, Binns et
al. ). Line elements are not considered here.

5.5.6.1 Nodal elements The triangular nodal element is the most
commonly used element type for two-dimensional problem formulations.
This element shape is the most adaptable to complicated geometries.
Therefore, it has advantages conceming an adaptive local mesh
refinement to enhance the quality of the approximated solution.

\\“
N
S

"\..\ k

i
Fig. 5.32. 2D triangular nodal element with lincar shape function.
The unknown values of the approximated function are defined at the
nodes of element. By using first order basis functions, w, equals 1 at one

node of the domain and 0 at the other two nodes of the trianguiar sub-
domain Q (Fig. 5.32).



88 Field computation and numerical technigues

w’'=d +dx+dy . (5.66)

The equivalent element type for three-dimensional models is the
nodal tetrahedron with the same advantage of being able to adapt
complicated geometries very accurately.

w?=d +dx+dy+dz . (5.67)

5.5.6.2 Edge elements By using edge elements, the unknowns are
referred to the edges of this element type. This is advantageous in three-
dimensional problem definitions. Therefore, this type of element is in
common use for three-dimensional FEM problems.

The basis functions w' are defined by:

w=wVw -wVw . (5.68)

For a three-dimensional element the course of the basis function of
an edge element is plotted in Fig. 5.33.

Fig. 5.33. First order three-dimensional edge element.

5.5.6.3 Facet elements The basis functions w’ are defined by:
w! =2(w,Vw, x Vw, +w_Vw, x Vw, +w Vw, x Vw,) . (5.69)

Ak

— 5 \

Fig. 5.34. First order three-dimensional facet element.
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Fig. 5.34 shows the course of a linear basis function of a three-
dimensional facet element. The function value in one node is zero. The
course of the basis function value is linear between the nodes of the
tetrahedron.

5.5.6.4 FEM element properties The basis functions w'*,w)”, w' and
w’ own special properties (Table 5.4).

Table 5.4. Properties of finite elements.g

type element properties
w?’, w” the value of the basis function at a node is 1 at the node n and 0 at
all other nodes
w' the value of the line integral over an edge is 1 at the edge e and 0
at all other edges
W the value of the surface integral over a facet is 1 in the plane f

and 0 at all other planes

5.6 Material modelling

In this section the most important material models such as permanent
magnet and non-linear ferromagnetic materials are introduced.

5.6.1 Non-linear material

Most of the electromagnetic field problems are inherently non-linear.
Having accurate numerical techniques able to handle non-linearities
strengthens the trend to have problems out of this class because material
costs and a desired minimisation of the devices force the exploitation of
material to its limits. As a consequence mainly highly saturated magnetic
circuits have to be analysed.

Fig. 5.35. Hysteresis loops and magnetisation characteristic (Salon **).
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The analysis of magnetic devices requires knowledge of the physical
properties of the materials used. Slowly magnetising a piece of
ferromagnetic material to a value H; and then reducing the field until it
reaches -H, , and repeating the process until the characteristic remains the
same, yields a hysteresis loop (Fig. 5.35). If the field is increased to a
value H; and the process is repeated, and then to Hj, etc., a family of
nested hysteresis loops is obtained as shown in (Fig. 5.35). The connected
tips of the hysteresis characteristics represent the normal magnetisation
characteristic. This curve is most commonly used in the finite element
analysis to represent the non-linear properties of ferromagnetic materials.
Using soft magnetic materials, the curve is narrow and thus an acceptable
approximation of the real behaviour of the material. Here, only non-
hysteretic materials are discussed. Manufacturers having different grades
normally deliver the material characteristics by B-H curves (Fig. 5.36).

2

Flux density |B], tesla

0 0 T T T T 25‘00 T v L! | 5000
Magnelic field [H|, amp/m
Fig. 5.36. Magnetisation characteristic in BH-form.

The basic principles of the linear finite element analysis carry over
to non-linear problems almost without modification. As always, a
stationary functional is constructed and discretised over finite elements.
As might be expected, the equations resulting from non-linear problems
are non-linear as well. They can be solved by several different methods.
Simple iterative methods are not always stable and can take a long time to
converge. A more common approach is to use Newton iterations.

In order to extend the linear finite element procedure to include non-
linear material properties, a mathematical model describing the magnetic
properties of the material is recommended. Therefore, computer readable
files of material properties must be maintained ready for use. Numerous
ways of modelling magnetic property curves have been tried out:
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e reluctivity as a function of flux density squared, v = v(B*)

o field as a function of flux density, H = H(B)

» permeability as a function of field squared, u= u(H")

e permeability as a function of flux density, u = u(B).

The Newton method is the reason for using squared values of the
independent variables B or H, rather than magnitudes. The variables are
usually derived from potentials in vector component form, so that finding
the magnitude involves first finding the squares of the components and
then extracting the square root of their sum. Using the Newton method
the Jacobian matrix can be evaluated in the form:

a'F _J- J'(U 51(32 ] dv 8B d8°

auéu, 5Ué'U 280,00, 2dB’5U,ﬁU]

Therefore, the classical B-H characteristic is not the best choice to
introduce ferromagnetic material properties in finite element software. In

¥dQ . (5.70)

the most common program designs the v =0(Bz) representation is
employed.

0,005

0.004 1

0.003 4

0.002 4

Relative reluctivity

0.001 -

0000 t+—/T———TT T T T T T T T T T Y
0 1 2 3 4

Squared flux density [Bf', (1csla)’

Fig. 5.37. Magnetisation characteristic in vB? form.

The range 0< B* < B._ of the v=uv(B") material characteristic is

subdivided into segments. The data samples v, B are tabulated in an
ASCII file readable by the finite element program. For the points between
the given data an interpolation scheme has to be chosen. In the simplest
case a linear approximation could be chosen. The ferromagnetic
characteristic would then be represented by a polygon. This
approximation would be discontinuous in the points of the given data
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sample. However, the Newton iteration recommends a continuous
function. Therefore, the values between the single data sample are usually
approximated by cubic spline-interpolating polynomials. For all points
beyond the range of available data the curve can be extrapolated linearly.

5.6.1.1 Cubic spline interpolation Splines are curves to approximate
functions. Cubic splines in particular have received much attention in
numerical analysis in the past, replacing other polynomial and
exponential approximations. The main reason for the interest in splines is
that they result in a simple formulation. They interpolate exactly at the
given data points and have a continuous first and second order derivative.
The continuous first derivative makes the method suitable for the Newton
iteration.

Assume a function x=x(y) to be interpolated by cubic splines in the
interval [a, b].

Given a tabulated function y=y(x;) , i=1(1)n with x arranged in
monotone way.

a=x<x%<..<X%,=b . (571)

The spline interpolating polynomial is called S(x) with properties:

e S(x) is two times continuous by differentiable in [a, b].

e §(x) is in every interval [x;, Xi+] given by a cubic polynomial.

¢ The points of S(x;) are y;(x;).

¢ As a boundary condition it is taken that y'=y!=0 in order to

obtain a so called natural spline.

Using the approach

S(x)=y=ay+by,+cy+dy, (5.72)
the coefficients can be calculated by applying:

X =

[ »
X, —X

1+ 1

X—X
h=""%

i =% (5.73)

; =%(a,’ —a)x, -x) ,

_xl)z

41

d, =<5 ~8)x
The first derivative with respect to x of the interpolating function is:
dS(x) _dy Y.—y, 3a -1 . 307 -1 .
—_—, e = L ! 3 =X -+ 4 e T 5:74
& & m,—x 6 U R ma ), G74)

while the second is:
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d'S(x) _d'y

d'  d

With this, the requirement of continuity of the second derivative

over the boundaries of the interval [x;; , x;] and [x; , Xu] is satisfied.

Because of a required continuous derivative of first order of the

interpolating spline function, the values of dS/dx at the point x = x, for

xe[x.,_,,xr] and xe[x,,xm] must be equal."Employing x = x; for both
intervals yields:

=ay/+by., . (5.75)

Xa =X e, X

= 6xm Yt 3 H 6 : y;l - i}: _::: ) i: _‘:: (576)

This equation can be evaluated with i=2(1)n-1 for every interval.
This results in n-2 linear independent equations for the n unknown !,
i=1(1)n at the given data samples. Using the conditions of a natural spline
y'=y"=0 yields two additional constraints. This is a symmetric tri-

diagonal system of equations and is easy to solve. With the derivatives
known, the coefficients of the interpolating spline function are now
determined.

A great advantage of using cubic splines is the fact that this linear
system of equations has to be solved only once to obtain the values of the
second derivative, Therefore, space for the solution of dimension n has to
be allocated in the memory of the computer only. For the finite element
method this means that this system of equation has to be solved only once
independently of the number of finite elements used in the model of the
magnetic circuit. For the practical use of the method a field of 20-25 data
samples is sufficient to represent a non-linear ferromagnetic material
characteristic.

The non-finear material characteristics are normally delivered by the
manufacturer in a B=B(H) form. The data can be given in a tabular or a
graphical form. This implies that the user of finite element software takes
the values and rearranges them into the appropriate v =uv(B")

representation. Converting the given data sample in this way may lead to
numerical difficulties. To ensure stable convergence and the highest
possible computational speed of the Newton iteration, particular attention
has to be paid to the numerical representation of the data samples. The
curve representation has to fulfil some numerical requirements. The
function v =wv(B') has to be monotonic. If the characteristic is not

monotonic, the derivative changes sign, eventually leading to slow or
even to non-convergence of the iteration scheme. A possible way to
overcome this problem lies in the optimisation of the given data samples.
Here, a numerical optimisation algorithm can change the values of the
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given points to ensure a monotonic behaviour of the characteristic. After
optimisation a technically pure curve is constructed.

5.6.2 Permanent magnets

The development of high energy permanent magnet materials such as
SmCo and NdFeB grades has led to increased interest in the use of
permanent magnet material in electrical machines and actuators. The
representation of these hard magnetic materials is difficuit and the subject
of ongoing research. As mentioned in the last section, ferromagnetic
materials are characterised by a narrow hysteresis loop. In contrast, hard
magnetic materials such as permanent magnets exhibit wide loops. It is
often acceptable to consider the magnetic characteristic of a permanent
magnet by a straight line in the second quadrant of the hysteresis loop.
This is not a limitation of the finite element method. During the design of
permanent magnet excited devices, particular attention must be paid to
the operating temperature of the magnets.

The intersection of the hysteresis loop with the ordinate is called the
residual or remanence flux density Br. The intersection of the abscissa
and the loop is called the coercive force He.

There are two possibilities allowing the modelling of a permanent
magnet material:

e magnetisation model

e current sheet approach.

Although these two methods have a different starting point, they
both result in the same set of equations. Assuming a straight line as the
characteristic of the permanent magnet material (Fig. 5.38), there are only
two parameters required to define the characteristic:

¢ the slope of the line u_ and
e the y-axis intercept Bg.

-H

Fig. 5.38. Definition of permanent magnet material.
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In Table 5.5 the most important permanent magnet properties are
collected. During a design of a device excited by permanent magnets,
particular attention has to be paid to the temperature dependence of the

grade used.
- 1.2 I
L] T
W A 10 B
(Nd¥sB) VACODYM 170 HR .| - L
VACOMAX 223 KR L~ o8
(Smeo) <7y, conax 170 V
A Anice 300 0.8
/ 4 i
/ e d
== - 0,4
/mou.\x 85 X / /?
P Y. / {(SmCo = / P 0.2
/ 7 plastie :ny 2
Farril
A/ | al .
-1000 kA/m -BOO -B800 -400 -200 1]

H

Fig. 5.39. Demagnetisation characteristics for different permanent magnet
material at room temperature 20° C.

Table 5.5. Properties of different permanent magnet material at room

temperature.
SmCo NdFeB NdFeB AINiCo Ferrile
VACOMAX Alpha Magnet VACODYM KOERZIT KOEROX
255 HR MQl 400 HR 700 400
By T 1.00...1.15 0.63 1.05..1.15 1.35 0.4
He kA/m 609 ... 900 380 770 ... 900 $8 255
(BH)wa  ki/m’ 190 ... 240 75 210...265 62.1 3l
A - <1l 1.15 <1 1.5..30 1.1
RTC(BY) %K -0.03 ... 0.035 015 0.12 -0.02 02
RTC(He) %K £02..03 0.5..-0.65 05..-065 -0.03 ...-007 +0.3..+0.5
Te s 800 310 3t 790 ... 900 450
T °C 300 180 125 500 325
Hey kA/m 3500 2800 2500 280 1000
g ghm' 84 6.0 74 7.3 49

Typical demagnetisation characteristics of different grades are shown in
Fig. 5.39.

5.6.2.1 Magnetic vector model The demagnetisation characteristic is
defined by

B=pu {0+ z,)H+M} (5.77)
where ¥, is the magnetic susceptibility, M the magnetisation vector and
H the field strength at the operating point AP. In terms of the remanent
flux density
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B, =M . (5.78)
The incremental permeability, the slope of the demagnetisation
characteristic, is

i

m:pu(l—fx.) . (5.79)

Xn. 15 a very small positive number so that the apparent

permeability of the magnet is only slightly larger than that of the free

space (Table 5.5).
The reluctivity is defined as

p—— (5.30)
B(+2,)
applying to the demagnetisation characteristic, yields
H=v(B-uM) . (5.81)
Using the Maxwell equation for a magneto static problem
VxH=J (5.82)
yields
Vx(B)=J+Vx(vuM) . (5.83)

The second term, the magnetic vector, on the right-hand side
represents a source term and can be identified as an equivalent magnetic
current.

5.6.2.2 Current sheet approach Using an equivalent current sheet
representing the permanent magnet material is an easy way to introduce
the material properties in a finite element program. In its original form it
is not easy to apply permanent magnets with an odd shape. However, if
the model is extended, an arbitrary shaped magnet can be described. In
the following section a linear demagnetisation characteristic of the
material is assumed.

| L
I:S—J_ b ’:%

IB)??J

a) b)

Fig. 5.40. Idealised magnetic core excited a) by a permanent magnet and b) by a
current sheet.
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Taking the permeability of the iron core in Fig. 5.40 to be infinite,
Ampere’s law yields

Hl+Hd=0 . (5.84)
Now, for a uniform B, it can be written (H is negative)
i
B=—pu —H . 5.85
pﬂ 6 L. 2 ( )

The intersection between the air gap characteristic, the load line, and

the demagnetisation curve represents the point AP of the magnet material
used (Fig. 5.38) with

B=B,+%—H=Bn+po(l+z_)H=BR+/1H . (5.86)

c
The permanent magnet in Fig. 5.38 can now be represented as a
current sheet with the total ampere-turns N/ = H ¢ and a material of
BII

equivalent permeability u =

(Fig. 5.38).
C
Again assuming an infinite permeability of the iron parts of the
magnetic core,

Hi+H,=H.tf . (5.87)
This yields

M, &
HC=B—'B+VETB - (588)

R
All magnetic quantities outside the magnet remain the same as in the
case of the magnetic vector, but are shifted to the first quadrant of the
magnetisation characteristic.
This method is easy to implement for rectangular magnets with a
magnetisation parallel to two sides of the rectangle (Fig. 5.41).

k

i i

Fig. 5.41. Triangular finite element with magnetisation.

These ideas now can be transferred to permanent magnets with an
arbitrary shape. Therefore, current sheets are assumed on all sides of the
finite element. After some elementary trigonometrically manipulations it
can be written
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1 .
I= EHE(Cr cosf, —b sind) ,
1 .
¢ =5HC(c, cosf, —b sinb)) , (5.89)

I =%—Hc(c‘ cosf, —b,sinf)) ,
with

g EX =X,

b‘ =0 ),

In a similar way the c;, bj, ¢, and by are calculated. With the
equivalent magnetisation vector

(5.90)

M=-v H,_ (5.91)
the currents are
1= -;—V;lo Mc-Mp) . (5.92)

The other edge currents can be calculated in a analogue way I; . This
procedure applied on an element by element base enables the
construction of arbitrary shaped permanent magnet material.

D Numerical implementation of the FEM

In this section, the theoretically derived abstract knowledge of the finite
element method will be practically applied to magnetostatic field
problems. Standard linear triangular finite elements will be used. The
system of equations will be derived using the energy minimum
functional.

Starting with the numerical solution of the Laplace equation in two
dimensions, then introducing impressed currents and permanent magnet
material, the difficulties programming a FEM code will be introduced and
treated. Reading this section should enable the reader to obtain an
understanding of the practical realization of the method in a computer

program.

5.7.1 Laplace’s equation

For simplicity in this example of the implementation of the FEM, a two-
dimensional approach is considered. A Cartesian co-ordinate system is
assumed. In a two-dimensional field the electrical field strength consists
of one component in the z-direction only and the magnetic fields are in
the xy-plane.
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E=(0,0,E,)

H=(H,H,0} (5.93)

B = (B.r’ By’ 0) G

The vector potential A and the current density J have a component
only in the z-direction. For reasons of simplicity the index z, to indicate
the direction, will not be written in the following.

A=(0,0,4)=A4

J, =(0,0,J,)=J,

The static magnetic field in terms of the vector potential is given by
the A-formulation of Laplace's equation:

Vid=0 . (5.95)

At this moment air is considered as material. Using the energy
minimum functional

F(A):% J]VAF Q. (5.96)

(5.94)

For a complete problem definition a magnetic flux has to be
imposed by applying the appropriate Dirichlet conditions at the
boundaries of the field domain of interest.

5.7.1.1 Linear basis function The problem region is discretised by
triangular node elements. The vector potential is approximated by linear
shape functions. By connecting all triangular elements at their nodes and
forcing the node potential to be equal, the magnetic vector potential
becomes continuous over the defined field region. Linear shape functions
are applied by using:

A=a+bx+cy . (5.97)

The coefficients a, b and ¢ are found from the values of the
magnetic vector potential 4;, 4, and A; at the three nodes of an element
(Fig. 5.42).

A1 =
41=|1 x (5.98)
4] 1«

(x2.¥2)

Fig. 5.42. Triangular finite element.
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The magnetic vector potential within an element is:
1

1 x' yl i Al
A=[] x ¥l = »l|l4 ; (5.99)
L x, »nll4

Using the shape functions, the magnetic vector potential is
approximated by:

A=Z’:A,N,(x,y) (5.100)
with
1 .
Nl=K[(xzy1_x:y1)+(yl_y:)x+(xn_x1)y] s (5101)
1
NL=I(al+blx+c,y) : (5.102)

The shape functions N, en N; are found by cyclic permutation of the
indices in (5.101) and (5.102). The area A, of an element is:

LIS ¢
1 1
A-=5[(x1y3_x1yz)+(yz_y1)xl+(xl—xz)y1]='£de] X N (5103)
Poxoy

It is easy to verify that the three shape functions are one at one node
and zero at both other nodes.

: 0V izj
N'(xl’ylk{l V i:j * (5.]04)

5.7.1.2 Functional within an element The gradient of the magnetic
vector potential in terms of the shape functions can be calculated by:

VA=Y AVN, . (5.105)
Substituting (5.105) into the functional within an element gives
1 2
FO=—(lv4d'dr , 5.106
L o4 (5.106)
F“’:lEZA,.jVN,-VN,dQ.A, . (5.107)
=l g T
xs')
The elements of the 3 x 3 element matrix K are
1
©
K=o (bb,+ce,) . (5.108)
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In a matrix-vector notation, the functional within an element is:

FO=lar KA . (5.109)
'siamp’

5.7.1.3  Assembling all elements The overall functional is found as the
sum of the functionals within the elements.

TR o (5.110)
=-é—A’KA . (5.111)

Summation is practically done element by element. The element
matrix K" is calculated for each finite element and added to the already
existing coefficient matrix K. For the two finite elements in Fig. 5.43 this
yields:

KO KW K9 1o

(R AR e S S S S o SN [
) ( ) (2}
o K0 KD KD KD+ KD KD
| w0 () (2) 0] e)] ()
K!I : K!I + KJI KJ! + KJJ : Kn

07 K Y

(5.112)

Two elements combined with each other have four nodes, i.e. the
coefficient matrix K becomes a 4 x 4 matrix.

®
® \D o

@

Fig. 5.43. Joining two finite elements.

5.7.1.4 The system of equation The system of linear equations is
found by forcing the partial derivatives with respect to all unknowns to be
zero. This is in fact an energy minimisation.

—OI-=O vk . (5.113)

a4,

Applying Dirichlet conditions at boundaries is fixing the magnetic
vector potential at some prescribed values. Two groups of nodes can be
distinguished: nodes with free potentials that are to vary (index f) and
nodes with prescribed potential values (index p). The node numbering is
such that all nodes with potentials that are free to vary are numbered first.
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1f.+ AK, K, A
S o R
K, K,TA
a[f—[[‘«\‘; A:{K” K”IA’]=0 : (5.115)
f o L »
K, K {A’]w (5.116)
. Bily : :
r

Applying the boundary conditions, the system of linear equations
becomes:

A =
[K’ OI f]=[ K”’A’] . (5.117)
0 I A' AP

The generated coefficient matrix owns some interesting properties:

» Sparse, Kj; is different from zero only if node i and j are
connected by an element.

e The matrix is symmetric Kij = Kjj, diagonal dominant and
positive definite.

The assembly of the matrix is straightforward and is done element
by element (Fig. 5.44).

J

element matrix
K(')

i=[(1)3

Dirichlet 7

yes

Y /=103

Dirichler ?

|
Fig. 5.44. Assembling of the coefficient matrix and the right hand side.
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5.7.1.5 Material properties Laplace's equation in two dimensions is
given by
V-(vwd)=0 . (5.118)
With the reluctivity, respectively permeability and their relative
values, index r, v=v_-v, L
# /lr .yﬂ
properties of the material used. Due to numerical reasons the relative
reluctivity v_ is used:

; charqcterizing the ferromagnetic

V-(v,v4)=0 . (5.119)
The functional is:
F(4)= jv v4'da . (5.120)

and is valid for magnetostatic problems with different materials and
where only Dirichlet and Neumann conditions are applied.

5.7.1.5.1 Functional within an element The functional within an
element becomes:

Fo-L IV,‘"IVAF iQ (5.121)
Fl ZZA v jvzv VN, dQ-4, . (5.122)
) pu]

;

K
The elements of the element matrix K*' are given by
: v®
KW =K(b,bj +ce,) (5.123)

5.7.2 Poisson’s equation
Poisson's equation in two dimensions is given by:

V-(vWA)=—J, (5.124)
or due to numerical reasons
V-(V,VA)=—%9— . (5.125)

]
The functional is

F(d)== j(v,|VA|‘ -2
24

J;A)dn , (5.126)
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and is valid for magnetostatic problems with different materials and given
current densities. Dirichlet and Neumann conditions can be imposed at
the boundaries.

5.7.2.1 Functional within an element The functional within an
element becomes

F(A)=% Aj'[v,"’

The evaluation of the second term gives:
l) A

{r)
v4 -2J°~~4]dn . (5.127)
Vll

7
j A (5.128)
s Vo o YV, m V,
;l ')
In matrix-vector notation, the functional within an element is
F¥ = %A’K"’A—A’T") . (5.129)
The elements of the source vector T are found as
()
70 = JoO AL (5.130)
v, 3

5.7.22 Solution of Poisson's equation The system of linear equation
is found by forcing the partial derivatives with respect to all unknowns to
be zero.

[Kof ﬂi’]{_x”’:’ +T] . (5.131)

P P

5.73 Permanent magnet material

It is assumed that the demagnetisation characteristic in the second
quadrant of the magnetisation curve of the considered magnet material is
linear (Fig. 5.45). This assumption is realistic for most of the modern rare
earth magnets such as the grades of NdFeB, SmCo or the Strontium or
Barium Ferrites. The permanent magnet is characterised by its remanence
flux density B; and its coercive force H. With the known material

equation B =uH the reversible permeability ;1,,,:—1- can be
v

b g

determined. Linear permanent magnets are described by:

B=pu H+B . (5.132)
This results in an extra exciting term in the differential equation and in
the functional.
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Vrev

yH
H
Fig. 5.45. Demagnetisation characteristic of a linear permanent magnet.
v, VA)‘ *+v(v.B,) (5.133)
F(4)= j( (VA ~22e4 (v_B, )JdQ g, (5.134)
with
Br‘:B"er‘{'Bwev = (5135)

This functional is valid for magnetostatic problems where a
magnetic field is imposed by currents and permanent magnets.

5.7.3.1 Functional within an element The third term in the functional
within an element becomes

BY (e)
jAv( “B)dQ = Zv"’ fAN( % ha . (5.136)
& x &
Applymg Green's formula gives:
jAV (v9B)da = zv"’A B"’éN %o | (5.37)
fa] & é}
Bl )b — RB%,
[4v(V2B)dQ = Z vy 2o Ba— (5.138)
Ay tul
This results in an additional term in the source vector T
J‘() A V(t)
T = i (B9, - B95) . (5.139)

o

5.7.3.2 Radial magnetisation The direction of the magnetisation for a
radial magnetised permanent magnet must be calculated for each element
separately (Fig. 5.46).
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(x3,3)
Ge yo)
(xl: yl) Br
e (o y0)
(xlry'Z) »e
Fig. 5.46. Radial magnetisation of magnet material within an element.
=% po © (5.140)
d
B};’:————~y';y° BY (5.141)
with
x¢=——x‘+’;’+x‘ » (5.142)
rty+y
=t =1 -1 5.143
¢ 3 ( )
d=y(x,-x)+0-n) (5.144)

5.7.4 Binary constraints
Binary constraints enforce a relation between values of the magnetic
vector potential at a first boundary and values at a second boundary.
A +kA,=m . (5.145)
Nodes belonging to the first boundary are indicated as binary
constrained (index 1), while nodes belonging to the second boundary are
seen as free nodes (index 2), yielding the system of linear equations in
matrix-vector notation:

K, K, K, 0JA/]| [T,-K,A,
K, K, K, 0|A | |T-K,A, Eie
K, K, K, 0/A, | |[T-K,A,
0 0 0 IJA,] A,
Elimination of A using (5.145) gives:
(K, 0 K,,-kK, 0]A,| [T,-K,A -mK,
K, 0 K,-kK, 0[A, | |T-K,A, -nK, e
K, 0 X,~kK, 0{A,| |T,-K, A -nK,
0 0 0 I|A, A,



Field computation and numerical techniques 107

Symmetrising the matrix (3" row = 3™ row - k- 2" row)

K, 0 K, kK, 0T 4,
0 I 0 0| A,
K, kK, 0 K,—kK, -kK, +KK, 0]A,
0 0 0 . I]A,
. (5.148)
T,-K_A, -mK,,
0
| T, -K, A, -mK, ~kT, +kK, A +kmK,,
A

P
The values of 4| are calculated with eq.(5.145) after solving the system

of equations. Fig. 5.47 shows the matrix assembling.

domanl matr
gl

=g

Fig. 5.47. Assembling of the coefficient matrix.
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5.7.5Non-linear materials

To implement the ferromagnetic properties of iron, the non-linear
characteristics have to be considered. This results in a system of non-
linear equations and this system can not be solved in a closed form. A
numerical iteration scheme has to be used to obtain a field solution with
the presence of ferromagnetic material. To obtain a solution of such a
non-linear system, the Newton iteration can be used.

5.7.5.1 Newton iteration The Newton iteration is a fast approach.
Applying appropriate start solutions, its rate of convergence is locally of
quadratic order. The numerical solution of a non-linear system is
transferred to a series of linear solutions, i.e. in every iteration step a
linear system of equation is solved. Various modified Newton methods
are in common use.

It is assumed to have the known system of equations:

K(A)-A-R=0=F(A) (5.149)

with K the coefficient matrix, A the vector potential and R the right hand
side; we call this the fundamental system F(A) or residual. When
compared to the set of linear equations, in the non-linear case the
coefficients of the system matrix are dependent on the solution vector A.
The difference between a solution in iteration step (k) and (k+1) is:

AW = AW L GO0 _ A L sA®) (5.150)

with d**" as the defect vector. The defect is used as a stopping criterion
for the iterations.

The fundamental system is expressed by a Taylor series neglecting
the second order and higher terms:

(¢

0=F(A™")=F(A® +3"")=F(A")+ ZL. g 4. (s.151)
This yields:

—F(A®)=P(A®).d*" (5.152)
with P(A™) the Jacobian matrix from iteration step (k).

OF(A)
P(A)=F(A)=—— 5:153
(A)=F(A) A (5.153)

The defect vector can now be evaluated by using:

d*" =P (A®)F(A®) . (5.154)
The iteration rule to compute A**" can be given by:

A* =AY _P(AMIF(A") . (5.155)

For practical considerations the formulation of the iteration in this
way is not very useful. But solving the system
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P7(AM)-d*" =~F(A") , (5.156)
and afterwards evaluating
A(M) = A(k) +d(hl) =Am P 5A(!) . (5.157)

results in the overall solution of the non-linear problem. If the start
solution is not chosen close to the exact solution of the system, the
iteration may oscillate, diverge and fail. To avoid this, a modified
damped Newton method can be implemented.

5.7.5.1.1 Jacobian matrix and final system of equations The Jacobian
can be assembled by applying:

dV 1 1
B =K +2 0354, VN, -VN)- (N, VN )- 4, . (5.158)
mul =)
The first term corresponds to the linear equations, while the second
term exists only in the presence of a non-linear material. By using an

arbitrary matrix K' corresponding with the element matrix

K“=¢vK" |, (5.159)
an arbitrary vector E can be defined with the elements:
3
K= ZK:_A_ (5.160)
=l
to obtain a more convenient formulation for the Jacobian matrix.
2 dv
f)':K”'FA—-d?E'EJ . (5161)

The system of equations to obtain the defect can be written by:
P, P, P, O|5A,
P, P, P, 0|GdA,
P, P, P, 0|4,
0 0 0 IjoA,
T,-K,A -K A-K A -KA,
| T-K,A -K A -KA -K A

T T,-K, A, -K,A -K,A,-K, A

2352

0
The source vector § for the calculation of the residual is introduced

(5.162)

as:
S=T-KA (5.163)
which yields:
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P, P, P, 0[6A,] [S,]
P, P, P, 0]dA, S
I/ i 12 = 1 (5. 164)
Plf Pn Pu 0 5A2 S:
(0 0 0 IJ oA, 0 |
Elimination of A using (5.125) gives
(P, 0 P,-kP, 0J6A,] [s,-mP,
Plf 0 P|2 _kPII 0 6A| - S! -mPH (5.165)
P, 0 P,-kP, 0]0A, S, -mP,,
0 0 0 IjoA,| | O
and symmetrising the matrix by (3" row = 3" row - k * 2™ row) yields
P, 0 P.—kP, 0] JA,
0 I 0 0| 0A,
P,-kP,, O P,—kP, -kP, +k’P, 0| A,
0 0 0 1| A,
B : . (5.166)
S, -mP,
. 0
S, —mP, kS, +kmP,
0

5.7.5.1.2 Damped Newton iteration For the Newton method, an
appropriate step length of the algorithm has to be chosen to save the
iteration from divergence. The damped Newton iteration is a variant of
the original method. The defect vector, Newton correction, is damped by
a factor o .

A" =AY — g (P(A)F(AMY) (5.167)
The idea is to accept the iterated A*™ only if the damping criterion

[Feae™)|, <JFa™), (5.168)

is satisfied to ensure convergence. If this condition is not satisfied,
damping steps must be performed until

[F(A® —ad*™)|, <(1-oa)|F(A™)), (5.169)
with the parameters @ = 8's for the damping steps j=0(1)jmax is satisfied
or a maximum number of steps is performed without success (Kosmol *).
The parameters are chosen in the range of:
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B=@0.0)
o=00,%) . (5.170)

s>0
Typical values are §=0.5, 0=0.5, s =1. The maximum number of

steps is typically between 5 and 10.

This scheme represents an adaptive damping factor for the Newton
iteration. If further problems occur, and the solution already diverges;
special algorithms such as gradient steps (Hameyer *) can be
implemented to fry to recover convergence.

58 Adaptive refinement for 2D triangular meshes

To obtain a high accuracy of the approximated solution using the FEM,
the number of elements has to be high. Refining uniformly causes many
finite elements in regions where they are not recommended. The idea of
an automated adaptive mesh refinement is to refine the discretisation
locally in different iteration steps, by starting with a minimum mesh and
terminating this approach with a quality mesh.

The problem in this approach is to know where more elements are
recommended and where fewer elements are sufficient to obtain the
desired global accuracy. Here, error estimation plays an important role.

To enhance the quality of a finite element discretisation, different
strategies can be followed, Errors in the solution can be identified at
different stages of the field analysis:

e a priori, before the field is computed

e a posteriori using the field solution to estimate the error.

Adaptive mesh refinement is often a combination of a-priori, a-
posteriori error estimation and a refinement algorithm. Error estimators
indicate which elements to refine. Due to a-priori mesh quality
indicators, various steps such as node movements or edge swapping are
performed. Mesh refinement based on an error estimator improves the
convergence when compared to a uniform refinement of all elements. The
slope of the global ermror |e| in Fig. 5.48 is an indication for the
convcrgence rate.

o=
Nu—o

with W the energy stored in the model, ¥}, the number of nodes, W, __

(5.171)

energy stored in a model (exact solution). In practice, W, _ is calculated

with a sufficiently high number of nodes.
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Global error | e|
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Fig. 5.48. Global error versus the number of nodes.

The proper combination of the various error estimators with the
appropriate element refinement algorithm ensures acceptable
computational efforts and efficient use of the available memory
resources. In the following sections, some notations are introduced to
explain the described refinement techniques.

5.8.1 Type of element refinement
Two different types of isotropic refinements are considered here. It is
assumed that the problem solution is unknown and thus no field
information is available. Therefore, an anisotropic mesh refinement is not
discussed here.

Red I, the first method of refinement, is element-based. Here, a new
node is inserted in the centre of an element (Fig. 5.49).

Red I' ‘Red' ‘Green II' ‘Green I'

A 2 A

Fig. 5.49. Element and edge-based refinement,

For an element-based refinement, the number of new elements per
refined element and the total number of new elements per adaptation step
is low because the refinement has no influence on the neighbouring
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elements. The initial aspect ratio of the new elements is worse than that
of the original element.

The boundaries of the studied domain must be treated in a special
way using this strategy (Fig. 5.50).

Fig. 5.50. Element-based refinement at boundaries.

The second type is an edge-based refinement, i.e. a number of new
nodes are inserted along the edges of an element. Using an edge-based
refinement approach, the number of new elements per refined element is
high and neighbouring elements are influenced. Adjacent elements must
be refined with Green I and II as well. Three different types of edge-
refinement can be distinguished indicated by the number of marked edges
(Fig. 5.49).

No special treatment of boundaries is recommended here. The initial
aspect ratio of the new elements is equal to the aspect ratio of the original
element.

5.8.2 A priori error estimation

This type of error estimation is performed before a numerical
computation to enhance the quality of the FEM mesh. Because no
solution is known, geometrical properties, such as the shape or angles of
a finite element of the mesh, are chosen to estimate the quality of the
discretisation. But such a priori error estimation does not permit a general
statement about the accuracy of the field solution because the overall
accuracy of the field approximation depends on the precise discretisation
of the geometry in regions with a large change of the field quantities as
well. Therefore, an a posteriori error estimator is necessary to estimate
the relative error of the field solution. Following a particular meshing
strategy, minimum or quality mesh, various actions can be taken to
minimise the numerical approximation error of the overall field solution
before starting the field computation itself.
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Fig. 5.51. Geometrical definitions for a standard triangular finite element.

Some general rules to generate a uniformly distributed discretisation
with triangular elements can be given. Using standard triangular finite
elements, the quadratic deviation from the angles of the triangle &, from
the standard angle 77/3 should tend to a minimum:

3

%Z(a. —#/3) - min. (5.172)

The ratio of largest and smallest angle in the mesh should tend to
unity:

Lowe 1, (5.173)

amﬁl

The ratio of maximum to minimum side length of a triangle should
tend to unity:

b (5.174)

(1]

Further details can be found in (Babuska & Aziz ).

5.8.2.1 Aspect ratio The aspect ratio y of a triangular element is
calculated as the ratio of radius R of the circumscribed circle to twice the
radius 7 of the inscribed circle (Fig. 5.52). An equilateral triangle has an
aspect ratio of one. Therefore, within the discretisation, the ratio of outer
to twice the inner radius of a triangle should tend to unity to generate a
uniform mesh:

R
=Nt 5.175
= (5.175)

_ abc
Ve -als-b)-c) °
with a, b and c the length of the three edges and s the semi-perimeter of
the triangle.

(5.176)
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a+b+c
§=—

- (5.177)

Fig. 5.52. Inscribed and circumscribed circle and edge definition of a triangle.

5.8.2.2 Delaunay triangulation The quality of a generated mesh is
characterised by
o the size of the elements referred to the outer dimensions of the
area of interest
an average element aspect ratio close to one
* a low worst element aspect ratio
e the ability to restore the original geometry.

A Delaunay triangulation is a first step to a high quality mesh.
Delaunay triangulation is defined in the following way:

For each pair of two adjacent triangles, the minimum of the six
angles in the two triangles is larger than it would have been if the
diagonal of the quadrilateral had been swapped.

This abstract definition means avoiding small angles and thus long
elements with a large aspect ratio. The shape of two considered triangles
must be unchanged,

>

Fig. 5.53. Swapping the diagonals of a quadrilateral, formed by two adjacent
triangles.

Each pair of adjacent triangles holding the same region label is
tested. The circumscribed circle of one of the triangles is calculated out of
the co-ordinates of the nodes. The diagonal is swapped if the fourth node
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lies inside the circumscribed circle (Fig. 5.53). The circumscribed circle
is in practice never calculated because this is too time consuming.

Fig. 5.54. Test for a Delaunay triangulation.

5.8.2.3 Cline and Renka test If node b lies in the circumscribed circle
of the triangle formed by nodes a, ¢ and d, then this yields according to
Fig. 5.55:

27R-2Ra <2Rf , (5.178)

a+f>m (5.179)
or

sin(a+ g)<0 (5.180)

sin(a)-cos(ﬂ)+cos(a)-sin(ﬂ)< 0 . (5.181)

Fig. 5.55. Cline and Renka test.

Round-off errors may cause problems if sin (a + ﬁ) is close to zero.
This happens when:
e o+ f isnear 1t

¢ ¢ and P are both near 0
* o and 3 are both near .
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Node b lies almost on the circumscribed circle in the first case and
swapping the diagonal has no bad effects. Swapping the diagonal may
result in a wrong triangulation in the last two cases. Therefore, additional
tests are included in the algorithm.

Table 5.6. Cline and Renka algorithm.

sep1: cosler)=(x, =x.)-(x, = x,)+ (0, - 2.)- (. - )
cos(B) = (x, -x.)-(x, - }+ (v, - 2.)- O, - ».)

Step2:  if (cos(@)20 and cos(f)=0)
then swap=FALSE
exit
Step3: if (cos(@)<0 and cos(8)<0)

then swap =TRUE
exit

Step 4: Sin(a)‘_"(x-_xc)'(y. —}’,)“(}’. —y:)'(xa—xd)
Sin(ﬂ)= (xb —x,_.)'()’, _yd)_(yl —y:).(xb —xd)
sin(a + B) = sin(e)- cos(#) + cos{a)-sin(8)

Step 5: if (sin{a + £)<0)
then swap =TRUE
exit
else swap~=FALSE
exit

5.8.2.4 Lawson’s Delaunay algorithm This swapping algorithm can
be used for an element-based refinement strategy. Fig. 5.56 shows the
initial triangulation with 11 nodes and 12 elements. When a new node is
inserted, the existing triangulation is updated to a new Delaunay
triangulation. This means in practice that the new nodes are inserted on a
node-per-node base and each time some tests are performed.

In the Delaunay algorithm of Lawson all the triangles adjacent to the
edges opposite the new node are placed on a LIFO-stack (last-in, first-
out). A maximum of three elements is placed on the stack in the first step.
All elements are taken one by one from the stack and a test is made as to
whether the new node lies inside the circumscribed circle. If the new
node lies in the circumscribed circle, the diagonal of the quadrilateral is
swapped to generate two better-shaped elements. The triangles that are
now adjacent to the edges opposite the new node are added to the stack.
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Fig. 5.56. Initial triangulation.

Fig. 5.57 illustrates Lawson’s algorithm for the initial triangulation.
According to an a posteriori error estimator, element number 6 is chosen
to be refined. The new node receives the number 11 and is inserted in the
centre of the element (Fig. 5.57a). Fig. 5.57b shows the three new
elements. One of the three new elements gets the original element
number and the other two get the numbers 12 and 13. For each inserted
node the number of elements increases by two. The three elements
adjacent to the edges opposite the new node are put on the stack (Fig.
5.57€).

The element that is put last on the stack is taken first from the stack
and tested as to whether the new node lies inside the circumscribed circle
of the element (Fig. 5.57d). If so, the diagonal of the quadrilateral is
swapped (Fig. 5.57e). Because there are no elements that are now
adjacent to the edges opposite the new node, no elements are added to the
stack. The next element is taken from the stack and is tested for whether
the new node lies inside the circumscribed circle (Fig. 5.57f). The
diagonal of the quadrilateral is swapped (Fig. 5.57g). Two elements are
now adjacent to the edges opposite the new node and are added to the
stack (Fig. 5.57h). Three elements are now on the stack.

The next element is taken from the stack and a test is performed
(Fig. 5.57i). No swapping is necessary and the same applies for the next
element on the stack (Fig. 5.57j). The last element from the stack is tested
(Fig. 5.57k). The new node does not lie inside the circumscribed circle of
the last element taken from the stack. Fig. 5.57/ shows the resulting
Delaunay triangulation.
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Fig. 5.57. Lawson’s Delaunay algorithm.

5.8.3 Reconstruction of the original geometry

Another characteristic of a refinement algorithm to obtain high quality
meshes is the ability to restore the original geometry when elements are
refined. Of each edge of an element on an outline, the primitive (arc,
circle or line) to which it belongs, is stored. If an edge of an arc or circle
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is refined, the new node is not inserted in the middle of the edge. The new
node is inserted in the middle in terms of polar co-ordinates (Fig. 5.58).
Pt p,

i 5.182
B (5.182)

Fig. 5.58. Restoring to the geometry during refinement.

5.8.4 Moving nodes

Moving the nodes results in a lower average aspect ratio. A node is
moved to the centre of the surrounding nodes (Fig. 5.59). A test is
performed so that no elements with a negative area are introduced.

ln-l

x=—2% ., (5.183)
1 i
1 a=l

Yo=—Fh - (5.184)

=

Fig. 5.59. Moving the nodes.

An edge-based refinement is easily extended with the moving node
approach. A node is moved to the centre of the surrounding nodes and all
pairs of two adjacent surrounding elements are tested. If swapping of a
diagonal was necessary, the node is moved again to the new centre of the
surrounding nodes. The loop is repeated until the number of swaps is
sufficiently low. Fig. 5.61a shows the triangulation before moving the
nodes, after one loop (Fig. 5.61b) and after two loops (Fig. 5.61c) of
moving and swapping. No diagonals were swapped after the two loops.
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for (i=0;i<numnode;i++)
movenode(i);
swapedge(i,swapped);
if (swapped = TRUE)
movenode(i);

Fig. 5.60. Extended test algorithm,

Fig. 5.61. Triangulation after moving the nodes.

5.8.5 Starting solution for the next adaptation step

An iterative solver to solve the system of linear equations needs a starting
solution. The first start solution is often the zero-solution. The starting
solution of the next adaptation step is determined by the interpolated
solution of the previous step before movement of the nodes. When an
edge is refined, the average of the solution of the two nodes forming the
edge is taken as the solution for the new node. A starting solution
obtained in this way can reduce the number of iterative steps by 25 %. A
reduction of one or more Newton steps is possible for strongly saturated
problems.,

5.8.6 Additional refinement rules
Marking the edges to be refined is performed in four steps to improve the
quality of the generated mesh, even in regions where no elements have to
be refined.
e To improve the initial average aspect ratio of the new
elements, the edges of elements with an aspect ratio > 5.0 are
marked in a special way (Fig. 5.62).
All edges of an element to be refined are marked.
All non-outline edges that touch two outlines are marked for
refinement during the first adaptation step (Fig. 5.63).
o All edges that touch an outline edge to be refined are marked
(Fig. 5.64).
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ﬁ;ﬁg

Fig. 5.62. Refinement of elements with an aspect ratio > 5,0.

Fig. 5.63. Refinement of non-outline edges touching two outlines.

Fig. 5.64. Refinement of edges touching an outline edge i.

5.8.7 A posteriori error estimation
An a posteriori error estimator evaluates the local error ey, per element,
based on a previously computed solution. This error estimation can be
performed in two different ways:

e model based and

e region, label based.

To obtain a local error between 0 and 1 for the model based strategy,
it is normalised, i.e. divided by the maximum error over all elements in
the model.

o =—2 | (5.185)
max(e, )

This type of estimation is called model error estimation. A
maximum accepted local error £, (e.g. 10 %) can be specified and all

elements with a larger error bound are considered for refinement.
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- S (5.186)

The elements are arranged according to their local error and the
elements with the highest error are refined first. The number of refined
elements is determined by the maximum percentage of new elements p
specified (e.g. 100 %). The maximum number of elements N, marked
for refinement is given by: )

N =p-c-N, . (5.187)
with N, the number of elements, ¢ a constant depending on the

refinement method. The constant ¢ indicates the ratio of the number of
refined elements to the number of new elements: ¢ = % for an edge-based

refinement and ¢ = )} for an element-based refinement.

e k k
1.0 1 1

Elocal

0.0 N, N, "
Fig. 5.65. Determining the elements to be refined.

A label-based error estimator calculates the local error within each
region label separately and the error is normalised by division with the
maximum error within the label. The maximum number of elements ~,,

to be refined is determined by the number of elements N,, inside the

label.

N,=p-cN, . (5.188)

Elements are refined all over the model, but also in regions (labels)
where it is probably not necessary. This, if not desired explicitly,
represents a disadvantage of a label-based refinement.

The local error can be evaluated in various ways. The error indicator
has influence on the generated mesh and its proper choice is dependent
on the problem definition as such, time-harmonic or static magnet field
solution and on the strategy of refinement, minimum or quality meshing,.
Therefore, no indication regarding use of a particular estimator or
estimation scheme will be given.



124 Field computation and numerical techniques

5.8.7.1 Enpergy in an element The energy W} in an element is an
indication for the local error e.
e, =W, (5.189)

5.8.7.2 Flux density at a node The magnetic flux density B,, at a node

i is the weighted average of the values of the magnetic flux density B, ,

of the surrounding elements & belonging to the same label (Fig. 5.66).
The weighting factor is the area A, of the elements.

iBe,& & Al
=

B, =
A

a4
k=1

The local error eg of an element is calculated as the difference

between the magnetic flux density of the element and the average of the
nodal values.

(5.190)

(5.191)

Fig. 5.66. Calculation of the magnetic flux density at a node.

5.8.7.3 Magnetic flux density in a node weighted with the energy
The local error e; based on the magnetic flux density in a node is

weighted with the energy W in an element,
(5.192)

]
B,,

e, = W: B_',--4='3—

5.8.8 Numerical implementation

Error estimation and mesh enhancements require computation time.
Searching in very large data structures absorbs most of this time. To
optimise such efforts with respect to the computational costs towards a
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better approximation of a field solution, ‘intelligent’ data structures are
recommended to accelerate the search routines.

Starting from the element matrix 'elem’ indicating how the elements
are built out of the nodes, the node-to-element matrix 'modeelem' is built
in a straightforward way (Fig. 5.67). This matrix gives for each node the
surrounding elements. The number of surrounding elements is stored in
the vector 'surrelem'. Fig. 5.68 gives the element matrix for the initial
triangulation of Fig. 5.56 and Fig. 5.69 the node-to-element matrix and
the number-of-surrounding-elements vector.

for (k=0;k<numelem;k++)
for (i=0;i<3;i++)
nodeelem[elem[k,i],surrelem[elem(k,i}]]=k;
swrrelem[elem[k,i]]++;

Fig. 5.67. Building the node-to-element matrix.

0 0 1 9

1 9 7

2 i 2 10

3 1 10 9

4 2 3 10

5] 3 4 5

6 3 5 8

7 3 8 10

8 5 6 7

9 5 7 8

10 7 9 8

1 8 9 10

Fig. 5.68. Element matrix.

0 0 1 2
1 0 2 3 3
2 2 4 2
3 4 5 6 7 4
4 5 I
5) 5 6 8 4
6 8 1
7 1 8 9 10 4
8 6 T 9 10 11 5
9 0 1 3 10 11 5
10 0 3 4 7 11 5

Fig. 5.69. Node-to-element matrix and number-of-surrounding-elements vector,
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The neighbouring-element matrix is now built. For each edge of an
element the neighbouring element is determined. The two rows of the
node-to-element matrix are searched for the common element numbers.
The element itself is found and if another element number is found, it is
that of the neighbouring element. As shown in Fig. 5.69, the rows of the
node-to-element matrix are sorted and the number of surrounding
elements is almost a constant, This means that very effective and fast
search algorithms can be used. Fig. 5.70 shows the neighbouring-element
matrix for the initial triangulation. Binary constraints are dealt with
during the building of the neighbouring-element matrix. Elements
connected through binary constraints are neighbouring elements.

0 3 1
1 0 10

2 4 3
3 2 11 0
4 7 2
5 6
6 S 9 7
7 6 11 4
8 9
9 10 6
10 1 i1 9
11 10 3 7

Fig. 5.70. Neighbouring-element matrix.

5.8.8.1 KEdge-based refinement An edge-based refinement is
implemented using a neighbouring-element matrix. The refinement of an
element influences the neighbouring elements. An error estimator marks
the elements to be refined. All the edges of the marked elements are
marked for refinement. Putting the number of the new node according to
the edge to be refined in the to-be-refined-edges matrix ‘refedge’ does
this. At the same time, the appropriate edge of the neighbouring element
is marked with the same node number. When two elements are connected
through binary constraints, the next node number is used. Fig. 5.71 shows
the to-be-refined-edges matrix according to the refinement of Fig. 5.56.
Again only element 6 is to be refined (Red' element). Elements 5, 7 and 9
are 'Green I' elements.
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0

!

2

3

4

5 11
6 11 12 = 13
7 13

8

9 12
10

il

Fig. 5.71. To-be-refined-edges matrix.

Fig. 5.72. Edge-based refinement.

After all edges are marked for refinement, each element is refined
according Fig. 5.72. Testing as to whether the intermediate triangulation
is a Delaunay triangulation is not done. A Delaunay triangulation is
unique and therefore it is sufficient to use a global Delaunay algorithm to
obtain a Delaunay triangulation with the new nodes. A possible algorithm
is a loop over all nodes and testing all pairs of two adjacent surrounding
elements. The number of swapped diagonals is counted and the loop is
repeated until there are no swaps performed. The resulting triangulation is
a Delaunay triangulation (Fig. 5.72¢). In practice, the loop is repeated
until the number of swaps is less than 10 % of the number of swaps in the
first loop. Because the number of swaps is rather low for an edge-based
refinement, the quality of the generated mesh is high, but the mesh is
strictly speaking not a Delaunay triangulation,

5.9 Coupling of field and circuit equations
In the FEM models considered up to now it was assumed that current

densities, permanent magnets and/or given potential distributions were
imposed as field exciting sources. Many models of technical relevance



128 Field computation and numerical techniques

can be modelled using the mentioned sources. But electromechanical
devices are operated by currents and/or voltages generated by a power
supply. Thus, such real devices are fed from electrical circuits. Such
external circuits consist of inductances, capacitances, resistances, current
and/or voltage sources.

The two-dimensional model of an induction motor does not consider
the resistor of the cage end-windings. The connection of the rotor bars is
not modelled in a simple two-dimensional cross-sectional model.
Therefore, additional external circuits with resistive elements have to be
defined to model the short-cut rings of the rotor cage.

In the following sections such external circuit equations will be
defined and coupled to the two-dimensional finite element equations. The
types of stranded and solid conductor will be introduced and
implemented in the FEM model. Both types can be handled
simultaneously in one model using a mixed formulation.

The same notation as used in the previous sections is assumed and
used.

5.9.1 Time harmonic problem
Regions with eddy currents and applied voltage gradient are called solid
conductors.
The partial differential equation for a two-dimensional time-
harmonic magnetic problem in solid conductors is:
V. (vWAd)-jw-cd=-J, . (5.193)
To stay in the same notation as in section 5.7 using the relative
reluctivity v, and the permeability of the free space g, , we can write:

V-(v,V4)-jo- pod=-pJ, . (5.194)
Regions without eddy currents but with applied current density J,
represent stranded conductors. They are described by Poisson’s equation:

V-(v,V4)=-pJ, . (5.195)
For non-conducting regions Laplace’s equation is valid:
V-{vvd)=0 . (5.196)

Different materials with respect to their conductivity o and
permeability x can be considered element by element.

The corresponding energy-minimum functionals are
» for solid conductors:

F(A):% {94 + jo- pod ~2u0,4)i0 (5.197)
DOgolid

oo
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e for stranded conductors:

F(A)=’5 _[(v, VA —2an,,A)dQ : (5.198)

Dgiranded
eandocton

¢ and for non-conducting regions:

F(4)=1 [v|v4dQ . (5.199)
2 Cloon -tomdatiing
{rpioes
59.1.1 Functional within an element For non-conducting regions

and regions without eddy currents (stranded conductors) the 3x3 element
matrix K remains the same as in the magneto static case (5.123).

bb +ce
€ 0 717y Ut}
Bt (5.200)

For regions with eddy currents (solid conductors) the functional
within an element is:

F9(A)= % | (vf"|v,4|’ +jouc 4~ 2p,J§"A)d Q . (5.201)

The second At'erm is:

% J (jop,o”4)dQ= %Z ,Z Ajopc® ;'[N,NJ dQ4, . (5202)
L;‘;"

The terms of the 3x3 eddy current matrix L' are given by:

LY = jou,c® % , (5.203)

LY = jou,c® % . (5.204)

The matrix L is symmetric. In matrix-vector notation, the
functional within an element becomes:

Fl — _;_ AT(KY+L9)A-ATTY (5.205)

5.9.1.2 Source vector For regions without eddy current but with an
applied current density J, (stranded conductors) the source vector T

remains the same as in the static case (5.130).

A e
9= =d" (5.206)
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Windings of electrical machines can consist of a number of
conductors connected in parallel with geometrical dimensions such that at
the considered frequency eddy currents can be neglected. For this case,
and stranded conductor p, the source vector is written in terms of the

current per strand 7, .

N
9= e =Rl (5200

1p tarp
,p

N, is the number of turns of the winding or the strands of conductor p
and A, is the area of the stranded conductor in the FEM mesh.
In the case of a solid conductor g, the source vector can be written

in terms of its voltage drop V., :

o Ae a-“) T,
0 = o3 Vta = 1OV (5.208)
with £ the length of the conductor.
5913 System of equations The system of linear equations is
assembled in the same way as for the magneto static problem.
K 0fA -K A +T
r r|_ y i)
[ 0 Im :[AJ _[ AP ] . B

Dirichlet boundary conditions are considered in eq.(5.209) and
binary conditions are omitted.

If the currents in the stranded conductors and the voltage drops over
the solid conductors are unknown, extra circuit equations have to be
added to the system. These equations can be seen as boundary conditions.
The circuit conditions act as a lumped parameters model that is applied to
the boundary of the differential problem. '

If 7, and ¥, are unknowns, the system in (5.209) becomes:

Af
{K: 0 i—ﬂal’m Q| A, =[_K"’A’] (5.210)
0 I,; 0 0 L A,
V i

5.9.1.4 Stranded conductors in eddy current problems The skin
depth of the current into a conducting material is given by:

2
5= :
wuo 2Ll
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with @ the angular frequency of the current, 1 the permeability and o
the conductivity of the conductor. In general, it is assumed that the
current density is uniformly distributed across the skin depth. However,
when a number of conductors are connected in parallel, the induced
voltage depends on both the current density and the magnetic vector
potential (5.212).

The entire voltage drop over the stranded conductors is calculated
by using the average voltage over the conductmg area:

V.,=N_V, | =—t N | ‘“+JmA dO (5.212)
str.p Nar d‘w;
with
N
J =ty . 5.213
s, p An,lp &rop ( )

When a stranded conductor is considered as a region of filamentary
conducting wires, the fill factor f,  for the conducting material is
defined as the ratio of the surface of the conducting material to the entire

surface of the conductor. In this way, insulating material can be
considered.

N (J Ll
V,,=0—=—*A, J
: Am_, q‘w.p el J=l
N . (5.214)
b Ty I E A,
d& W odrp e
o et
From eq.(5.214) it can be taken that the total voltage drop consists
of a resistive component V7 =R, I and an inductive

component V_;"f’P. Therefore, in an electric network model, a stranded

conductor can be represented by a series connection of an ohmic resistor
and a controlled voltage source (Fig. 5.73).

R Ve

e

Fig. 5.73. Network elements representing a stranded conductor.
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59.1.5 Solid conductors in eddy current problems In the case of
solid conductors, the gradient of the voltage is assumed to be constant
over the surface of the conductor. The eddy currents are a function of
both the voltage gradient and the magnetic vector potential:
I.,= [5,dQ= [oVV~jwcd)dQ
Amlg Astg

ol 3
=28, —joo$ 34 b (5.215)

(]
" wlg
el Jul 3

oA .
= _% wig ] mf; QJ.vAJ

N, e —— —
G.nl,g I:ﬂ'.d.q
From eq.(5.215) it can be taken that the current consists of an
admittance current /% =G_, ¥, and an eddy current I% component.
In the circuit analysis, a solid conductor can be modelled by admittance
and a controlled current source connected in parallel (Fig. 5.74).

ind

Fig. 5.74. Network elements representing a solid conductor.

5.9.2 Coupled field—circuit equations
To solve the time-harmonic magnetic field, the unknown magnetic vector
potentials can be calculated by evaluating the:

*  known potentials at the boundary (Dirichlet)

e known current densities in stranded conductors

* known voltage gradients in solid conductors.

In reality, it is not possible to know these quantities from the system
before solving the magnetic field because they are dependent on each
other. The electric and magnetic parameters, and thus the fields of the
system interact very strongly.
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It is recommended, therefore, that the currents of stranded
conductors and the voltage drops in solid conductors are considered as
unknowns of the system. The equations (5.215) and (5.214), describing
an external electric circuit (Fig. 5.73 and Fig. 5.74), have to be added to
the set of field equations to obtain a coupled system.

The coupling of the magnetic field with the.electric circuit equations
can be obtained numerically strong or by a weak coupling.

Using some initial values, a first computation of the magnetic field
is performed. Out of this field solution, the induced voltage drops over
the stranded conductors and the eddy currents in solid conductors are
evaluated. By using these results, the electrical quantities of the electric
circuit network are calculated, supplying new values for the currents in
the stranded conductors and the voltage drops over the solid conductors,
to be used for a new calculation of the magnetic field.

To solve the entire coupled field-circuit problem, an iterative
procedure can be applied. Both partial problems are solved in successive
steps. This approach is a numerically weak coupling of the two systems.

To obtain a numerically strong coupling, it is possible to assemble
all unknowns in one vector and to combine all equations describing the
system in one matrix. All equations describing the system are solved
simultaneously. This approach is called a numerically strong coupling of
the systems. If all stranded conductors are voltage driven and if all solid
conductors are current driven, the coupled matrix is given by:

Kﬂ‘ 0 i_ﬂﬂPl.p —.uan.q A] —KpAp

0 L, 0 0 A A, 5216
7 Vo | i v
& meQM 0 |; 0 Gﬂa Vm‘e INM

Multiplying (5.215) with a factor y = /Ju/j(aé’ and (5.214) with — 7
results in a symmetrical matrix.

59.2.1 Mixed stranded and solid conductors Mixed stranded and
solid conductors in a connected network cause problems describing the
circuit. The matrices obtained by a separate analysis of stranded and solid
conductors can not be arranged together.

The circuit theory indicates a problem while enumerating tree and
co-tree branches. In Fig. 5.75a one of the three solid conductors has to be
considered as a link. In Fig. 5.75b only one of the stranded conductors
can be considered as a tree branch.

Replacing the magnetic branches, as indicated in Fig. 5.73 and Fig,.
5.74, fails. In this case cut-sets containing a stranded conductor branch
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include solid conductor branches. Loops holding a solid conductor branch
include stranded conductor branches.

To solve this problem, the connected network has to be represented
in another form.

Il XK

tree branch

a) b)

Fig. 5.75. a) Star-connected stranded conductors and b) solid conductors
connected in parallel.

5.9.3 Network topology
With a network topology, lumped parameter networks obeying three
basic laws:

e Kirchhoff voltage law (KVL),

¢ Kirchhoff current law (KCL) and

*  Branch current-voltage relations (BCVR)

can be studied. A complete description of the network delivers
information on:

e the connection of branches,

e the reference directions for branch currents and voltages and

o the branch characteristics.

Items 1 and 2 can be represented by a directed graph (Fig. 5.76).

By defining loops, cut-sets and a tree, the network description can
be performed systematically. Loops are the sub-graphs to which KVL is
applied. Cut-sets are the sub-graphs to which a generalised KCL is
applied. The concept of a tree is a tool for a systematic formulation of
independent KCL and KVL equations.

d
1 o 5
e £ h
1
a f K 4 ¢
J i
2 — 6
b

Fig. 5.76. Directed graph,
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5.9.3.1 Definitions
Path

A set of branches is called a path between two nodes p and q, if the
branches can be labelled in such a way that:

* consecutive branches always have a common endpoint,

¢ no node is the endpoint of more than two branches in the set, and

» p is the endpoint of exactly one branch in the set, and so is q.

Thus, A path is just a route between two nodes. In Fig. 5.76
branches (dhib) form a path between nodes 1 and 2.

Connected graph

An undirected graph is a connected graph if there exists a path
between any two nodes of the graph. A network is connected if the
associated graph is connected. The graph in Fig. 5.76 is connected.

Loop

A sub-graph of a graph is called a loop if

e the sub-graph is connected, and

» every node of the sub-graph has exactly two branches incident at
it.

For example, in Fig. 5.76 the branches (abcd) form a loop.
Tree, co-tree, branches and links

A sub-graph of a connected graph is called a tree if
e the sub-graph is connected,

¢ the sub-graph contains all nodes of the graph, and
» the sub-graph contains no loops.

For example, in Fig. 5.76, the branches (aedgi) form a tree. The
branches belonging to a tree are called tree branches, and those that do
not belong to a tree are called links. All the links of a given tree T form
what is called a co-tree with respect to the tree 7. It can be shown that for
a connected graph with n nodes, any tree T has exactly n-/ tree branches.
Furthermore, each set of n-I branches without loops constitutes a tree.

Cut-set

A set of branches of a connected graph is said to be a cut-set if
o the removal of the set of branches (but not their endpoints)
results in a graph that is not connected and
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after the removal of the set of branches, the restoration of any

[ ]
branch from the set will result in a connected graph again.

For example in Fig. 5.76, the branches (aed) or (dgjb) form a cut-set.

Incidence matrix
An incidence matrix of a directed graph with » nodes and & branches

isanx bmatrix A, = I_a‘,] where:

e a, =1 if branch  is incident to node i, and the arrow is pointing

away from node /,
e g, =-1 if branch j is incident to node i, and the arrow is

pointing towards node i, and
e a,=0 if branch is not incident to node .
1

(LS,

Fig. 5.77. Directed graph.
For example, for the directed graph from Fig. 5.77:

a b ¢ d e f incident branches
ML 0 1 W O =
2.1 1 0 0 1 O
A, =
3lo 0 -1 1 -1 O
40 -1 0 -1 0 1 . (5.217)

One of the rows of A, is linearly dependent on the other rows. The
matrix A obtained from A, by omitting a row is called a reduced
incidence matrix. A, is called the complete incidence matrix.

The KCL for the network can be written in matrix-vector notation as

Ai=0 (5.218)

The maximum set of independent KCL equations, obtained from the

nodes of a connected network, can be expressed as
Ai=0 (5.219)
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A can be partitioned as [AT | AL] where the columns of A
correspond to the tree branches of a chosen tree 7, and the columns of
A correspond to the links.

Loop matrix

For a directed graph with b branches and »; oriented loops, the loop
matrix is a #, x b matrix B, = b,JJ where:

e b, =1 ifbranch is in loop /, and their directions agree,

e b, =-1 if branch; is in loop /, and their directions oppose, and

e b, =0 if branch j is not in loop i.

For example in Fig. 5.77 there are seven loops. The loop matrix is:

a b ¢ d e [ branchesintheloop
oo yrt 0 -1 0 1 0] ae
2/10 1 0 -1 -1 0| bde
3111 0 0 0 1| abf
B,=4/1 1 -1 -1 0 0| abdc
5000 1 1 0 1| cdf
61 0 0 1 1 1| aedf
700 1 1 0 -1 1] bfee
(5.220)
The KVL for all loops can be expressed in matrix-vector notation as
Byv=0 . (5.221)

Any sub-matrix B, consisting of the maximum number of
independent rows of B, is called a basic loop matrix. Thus, the b—n+1
independent KVL equations may be expressed as

Bv=0 . (5.222)

A systematic method of constructing a basic loop matrix is through
the aid of a tree T. Each link of the associated co-tree, together with the
unique path through T, forms a loop, called the fundamental loop for that
link. A sub-matrix of B, constructed by the use of b—n+1 links is
called a fundamental loop matrix B, .

For example, in Fig. 5.77 a tree T consists of the branches (abc). The
corresponding fundamental loop matrix is
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a b ¢cid e f
d[-1 -1 1{1 0 0] dbac
Bp=el1 0 -1{0 1 0f eca
]

flt 1 010 0 1] fab
. (5.223)
It is obvious that any fundamental loop matrix can be partitioned as:
B =B, |1 . (5.224)

Cut-set matrix

For a directed graph with b branches and 7, oriented cut-sets, the
cut-set matrix is a n, x b matrix D_ = ldu] where:

e d, =1 if branch; is in cut-set i, and their directions agree,

e d, =-1 if branch; is in cut-set i, and their directions oppose, and

e d, =0 ifbranch; is not in cut-set i.

For example, there are seven cut-sets in the graph of Fig. 5.77. The
cut-set matrix is

a b ¢ d e f branchesinthe cutset
cutsef .
i1 0 1 0 0 -1} a¢
2(-1 1 0 0 1 0| abe
3o 0 -1 1 -1 0 cde
D,=4/0 -1 0 -1 0 1| bdf
50 1 1 0 1 -1| beef
6)1 0 0 1 =1 =1| adef
7[-1 1 -1 1 0 0| abed

= ; . (5.225)
The general form of the KCL in matrix-vector notation is:
Di=0 . (5.226)
Any sub-matrix D, of D, consisting of the maximum number of
independent rows of D, is called a basic cut-set matrix. A systematic

method for constructing a basic cut-set matrix is through the aid of a tree
T. Each tree branch of 7, together with some (possibly no) links in the
associated co-tree forms a cut-set, called a fundamental cut-set for that
tree branch. A sub-matrix D, constructed with the #-/ fundamental cut-

sets is called a fundamental cut-set matrix.
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For example, for the graph of Fig, 5.77 with tree branches (abc), the
fundamental cut-set matrix is

a b ¢ d e f

11 0 0/ 1 -1 -1 adef

I
De=2(0 1 01 0 -1 bdf
300 0 11-1 1 0] cde

. (5.227)
It is obvious that any fundamental cut-set matrix can be partitioned
as:

D, =[1!Dp] . (5.228)

Relationship between branch variables

When the reduced incidence matrix A, the fundamental loop matrix
B and the fundamental cut-set matrix D are built corresponding to the
same tree 7, the matrices can be partitioned by:

A=[A, 1A] , (5.229)
B=[B, |1] |, (5.230)
p=1ip,] , (5.231)
vT
=|-2| , (5.232)
vl.
iT
i=|--| , (5.233)
ll,
and the following relationships can be given:
v, =-B,v,  (loop transformation), (5.239)
i,=-Di_ (cut-set transformation), (5.235)
v=A"v_,, (node transformation), (5.236)
D, =-B’ . (5.237)

5.9.4 Circuit analysis

Linear and time invariant networks with lumped parameters can be
described by various techniques. The equations are the KVL, the KCL
and the branch current-voltage relationships (BCVR). The known
quantities are the currents of independent current sources, the voltages of
independent voltage sources and the impedances of the branches.

5.9.4.1 Tableau analysis The unknowns in a tableau analysis are the
branch currents and the branch voltages. The system of equations consists
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of the KCL for each node of the circuit, the KVL for each loop of the
circuit and the BCVR for each branch of the circuit.

Fig. 5.78. Example circuit.

For example, consider the circuit of Fig. 5.78. The system of equations is
given by:

KCUm) [ &1 +iz +i =
KCL{nm) ~iy +ig =0
KCL{n3) - -y -ig B =0
"12?571)' """"""""""""""""" v -y =0
KVD([Z) | -V +Vv; +vqg =0
KVL() Y2 V3 v =0
BCVRO) |-z +v =0
BCVR(2) - 2Z5.ip + ¥y =0
BCVR(3) i3 =

BCVR(4) | Vg =

(5.238)

It is obvious that the number of equations is larger than the number
of unknowns. There are linear dependent equations in the system. The
matrix is sparse, singular and not symmetric.

5.9.4.2 Modified nodal analysis The unknowns in a modified nodal
analysis (MNA) are the nodal voltages and the currents through the
independent voltage sources. For each node per connected circuit
component, except the chosen reference node, the KCL is written.
Applying the BCVR to each branch immediately eliminates the
currents. The branch voltages are expressed with respect to the nodal
voltages. For each independent voltage source, an extra unknown current
is added to the set of unknowns. An extra equation, representing the
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difference between the two nodal voltages of the voltage source to the
known voltage drop, is added.
For the circuit of Fig. 5.78, this approach results in:

n+hn *Yz 01| vp -1

% B 1y, [=] o0

0 1 oofli] |V (5.239)

The system of equations is sparse and smaller when compared to the
tableau analysis. There are no superfluous equations. The unknowns are
the nodal voltages and branch currents.

5943 Compacted modified nodal analysis In the compacted form
of the MNA, the unknown currents through the independent voltage
sources are eliminated by substitution of the extra equations concerning
the independent voltage sources.
Y+y] b =Fr+xr] . (5.240)
The system of equations is again reduced, moreover, there are no
zero diagonal elements left in the matrix. The matrix is symmetric.

5.9.5 Topological methods

A topological method for circuit analysis is a technique deriving
parameters describing the circuit behaviour from the structure of a graph,
associated with the network. Some topological methods are the Signal
Flow Graph method and the tree-enumeration method.

5.9.5.1 Signal flow graph A signal flow graph (SFG) is a weighted
directed graph representing a system of linear equations. The nodes
represent the variables; the branch weights represent the coefficients in
the relations between the variables. A node variable and the sum of the
incoming branch weights, multiplied by the node variable from which the
incoming branch originates, represent an equation. Consider for example
the SFG of Fig. 5.79 and the corresponding system of equations:

x =ax, + dx, ,

x, =bx +cx +ex, , (5.241)

X = o+ gx,

In a SFG, a node with outgoing branches only is called a source
node. A node with some incoming branches is called a dependent node. A
dependent node with incoming branches only is called a sink node.
In Fig. 5.79, x, is a source node, x,, x, and x; are dependent nodes

and x; is a sink node.



142 Field computation and numerical techniques

Fig. 5.79. Signal flow graph.

5.9.52 Formulation of the signal flow graph It is assumed that the
voltage sources do not contain loops, and that the current sources do not
contain cut-sets. It is possible to select a tree T such that all voltage
sources v, are tree branches, and all current sources i, are links. The

impedance trec branches are characterised by the impedance matrix Z,
and the immittance co-tree branches are characterised by the admittance
matrix Y, . The following steps can construct a SFG:
1. Apply KVL to express each element of v, in terms of elements
of v, and vp.
2. Apply KCL to express each element of i_ in terms of elements of
i, and i .
3. For impedance tree branches, each voltage is expressed in terms
of the current through the branch: v, =Z.i. .
4. For immittance co-tree branches, each current is expressed in
terms of the voltage across the branch: i, =Y, v, .

A SFG formed in this way displays the KCL, KVL and BCRV
relations in their most primitive way. As a consequence, it is called a
primitive signal-flow graph. The primitive SFG of the circuit from Fig.
5.79 is represented in Fig. 5.80.

The number of nodes in the SFG can very easily be largely reduced
by the use of a compacted signal flow graph, which is obtained from the
primitive signal flow graph by eliminating all sink nodes and the
variables i, and v . The compacted SFG of the circuit of Fig. 5.78 is

represented in Fig. 5.81.
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Fig. 5.81. Compacted signal flow graph.

5.9.6 Circuit analysis for the coupled field-external circuit system
The solid conductors are considered as an admittance branch and a
controlled current source connected in parallel:

I,=G_V_-jafQ A . (5.242)

A is the vector of the magnetic vector potentials and jwfQ!, is the

matrix with the coupling terms of (5.215). The stranded conductors are
considered an impedance branch and a dependent voltage source
connected in series:

V, =R_I_ +jolPTA (5.243)

where jwfP] is the matrix with the coupling terms obtained by the
discrete integration of (5.214).
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5.9.6.1 Modified and compacted modified nodal analysis The tableau
analysis is not suited for numerical calculation because the dependent
equations result in a singular system matrix.

In an MNA, for each connected sub-circuit a reference node is
chosen. On all other nodes an unknown voltage is defined. For each
independent voltage source and for each stranded conductor, an unknown
current is defined. For each node, the KCL is written. The currents are
immediately written in terms of the nodal voltages by means of the
BCVR. In the case of a stranded conductor branch or an independent
voltage source branch, the current is unknown. For each of these
branches, an extra KVL equation describes the nodal voltages of the
endpoints in terms of the unknown curmrents and the magnetic vector
potentials.

iy vV
n n n
MmN ‘
i * J } i Stranded conductor
—=—
Solid conductor
str* | | I | str sol sol* _E}_
Y
" ng = ref) ns =ref;

Fig. 5.82. Electric circuit with stranded and solid conductors.

This method has been applied to the circuit in Fig. 5.82.

KCL(H‘I) il + i2 =0

KCL(III - iz + fJ =0

KCL(n Yopy =l =0

XCUm) { L0 W, - joK{QL + Qe J4 =0
KVi{sr®) | - i - jotPh A=0
KVL(¥) Vi, —Vm ‘14

KVL(str) L Vg =240y - jotPgA=0
(5.244)

The factor 7y can symmetrise the coupled magnetic-electric system
of equations for a 2D time-harmonic problem,

The presents of zero elements in the diagonal of the matrix makes
the choice of an appropriate method for solving the system of equations
more difficult.

As with the CMNA, the extra KVL equations can be substituted in
both the KCL equations and the field equations, tending to a smaller and
symmetric matrix with a fully occupied diagonal. However, the
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implementation of the dense circuit equations into the sparse system of
field equations makes the solution procedure difficult.

The major problem of the nodal approach in the circuit analysis is
that the description of the circuit is based on the voltage only. A more
suitable description would be based on a hybrid use of both unknown
voltages and currents. Here, the difficulty is the systematic determination
of the circuit components described by currents, voltages and the
interface parts in the circuit.

59.6.2 Signal flow graph for coupled magnetic-electric problems
The circuit in Fig. 5.83 is considered. Branches are assembled in the tree
with preference:
» voltage sources, solid conductors, impedances and stranded
conductors.
The preferred order for links is:
e current sources, stranded conductors, admittances and solid
conductors (Fig. 5.83).

The fundamental cut-set matrix and the fundamental loop matrix are
partitioned in components. They are associated with the stranded
conductors being links (s#r), tree branches (str*), solid conductors being
tree branches (sof), links (sol*), independent sources (i and v) and the
immittance tree branches (7) and links ().

Applying the Kirchhoff current law (KCL) for each fundamental
cut-set and the Kirchhoff voltage law (KVL) for each fundamental loop
arranges a SFG. The unknowns of the system are the link currents and the
tree branch voltages. The SFG of a stranded and a solid conductor is
shown in Fig. 5.84. The Signal Flow sub-graphs of the circuit of Fig. 5.83
are represented in Fig. 5.85. Table 5.7 shows the equivalencies between
the SFG and the matrix calculus.

Table 5.7. Equivalence between circuit theory, SFG and matrix calculus.

circuit analysis signal flow graph malrix notation
Kirchhoff current law current nodes DI=0
Kirchhoff voltage law voltage nodes BV =0
branch relations vertical connections V=ZI1.I=YV
cut-set iransformation sliiminaie vw‘ . I..- I.=-D_I-D_I,
loop transformation climinate V i I - V..=-B_.V,-B__V.,
compacting

climinate I_, V, V. =ZI ;1. =YV,
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Tree branch

Link

Strnded conductor

Solid canducior

-3

Fig. 5.83. Electric circuit with a) stranded and b) solid conductors.

Var P,,/ Vaol
i Ry A Vel A Gyl
str " Py sol Qo /
foir X g1

Fig. 5.84. SFG of a a) stranded and b) solid conductor.

Osal*

_ Qm%

-1
Isol HPp—u——@ lwp

O
A
Fig. 5.85. Non-coupled signal flow graph.

Joining the graphs does not change the graph nodes so long as the
dependent nodes of the first graph correspond to source nodes of the
other graph and vice versa. Therefore, branch current-voltage relations
(BCVR) are added either as impedances or admittances (Fig. 5.85). Two
dependent nodes are joined together to one zero node by changing the
sign of all incoming branch weights of one of the sub-graphs. The former
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unknown of that node disappears. This happens for the stranded
conductor links and the solid conductor tree branches (Fig. 5.86).

- Q% 0 - Qﬂ%

Fig. 5.86. Coupled signal flow graph.

Combining magnetically coupled branches causes three difficulties:

e Stranded conductor tree branches are described by a dependent
current (Fig. 5.85a).

e Solid conductor links are described by a dependent voltage (Fig.
5.85b).

¢ The coupling terms are not symmetric.

Three operations can solve the above mentioned problems:

1. Partial cut-set transformation

The preferences while choosing tree branches result in a
fundamental cut-set associated with a stranded conductor tree
branch which contains only current sources and stranded conductors.
A partial cut-set transformation

I.=-D_I1-D__I_ (5.245)
contracts the graph in direction o (Fig. 5.86). The current of the
stranded conductor tree branch is expressed as a combination of
independent currents and other stranded conductor currents (Table

5.7).
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2. Partial loop transformation

A fundamental loop associated with a solid conductor link only
exists of voltage sources and solid conductors. A partial loop
transformation

V,=-B_, V-B_,.V, (5.246)
contracts the graph in direction B (Fig. 5.86). The voltage of the
solid conductor link is expressed as a combination of independent
voltages and other solid conductor voltages.

3. Symmetrising the system

A contraction of the BCVR (direction y in Fig. 5.86,Table 5.7)

leads to a compact signal flow graph (CSFG) (Fig. 5.87).

V. ! 0 P,,/ _ P,,/
0.4 X
A

st V ——np

Quot + Cyol+

- Zyye + Zyeo ¥Z
Yol + Yeot+

- Q'% - Q‘d% 0 Tgr

Fig. 5.87. Compact signal flow graph.

Page = Py

From the CSFG, the coupling matrices are extracted in a simple

way. The unknown graph nodes become system unknowns. The
dependent graph nodes represent matrix equations. The coupling terms
are kept symmetric. Compared to tableau analysis, MNA and CMNA, a
reduction of additional circuit equations is obtained. Multiplying the
circuit loop equations with y and the circuit cut-set equations with — ¥

leads to the coupled field-circuit matrix

K -F|lA H
r = (5.247)
-F* S C| [xW
where
- R;f 0 - Bnr.ul . Bnr.r
0 -Z -B -B
§= t ot K (5.248)
p, D, G, 0
Dr.n- DT,L 0 o
with
R,=R_-B,_R,D,.. (5.249)
G,=G_,-D_.G_B,.. (5.250)
c=f, 1, v, V. (5.251)



Field computation and numerical techniques 149

H = _Pw'an'.lIl - QnI'BJol',vVv

F=[p,-P,D,. 0 Q,-Q.B_. 0 (5.252)
and
B, V,-B,__R,D_]I,
Wi = - (5.253)
=D I +D, GLB..V,
-D_I

T
In the case of a quasi-static problem, K is complex symmetric. § is
symmetric because B, =-D} and that R, R,.., G, G,., Z, and

Y, are diagonal matrices.

5.9.7 Solution of the system of coupled equations

Particular attention must be paid to the solution procedure of the coupled
system of FEM and circuit equations. The matrix obtained for a 2D time-
harmonic solution coupled with an electric circuit described with the
proposed method is complex, symmetric, has no zero diagonal elements
but is not hermitian.

The FEM block is positive definite and the circuit coupling block is
negative definite. Therefore, the conjugate gradient (CG) method can not
be used. Other suggestions are the bi-conjugate gradient (BiCG) method,
the conjugate gradient method on the normal equations (CGN), other
orthogonal Krylov-subspace methods and block elimination schemes
(BES).

5.9.7.1 Conjugate gradient on the normalised equations Instead
of solving the system

AX=B , (5.254)
the system

A’AX=AB (5.255)

is solved. The matrix is hermitian.

5.9.7.2 Block elimination schemes Due to the fact that the different
parts of the matrix have different properties, it is advantageous to split up
the matrix into several blocks. By matrix calculus, some block
elimination schemes can be derived. The kind of elimination is dependent
on the criterion to divide the matrix.

The system of equations can be partitioned as:

Hogs
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where A is a sparse matrix with the same dimension as the mesh, C is a
full matrix with all circuit equations and B is a full matrix containing the
coupling terms between the FEM magnetic field description and the
circuit equations.

The system can be written as:

(C-B'A"B)Y=S-B'A"R (5257)

(c-B'P)Y=S-B'Q (5.258)
The vector Q and each column of P can be calculated by

AQ=R (5.259)

AP =B, (5.260)

using an iterative equation solver for sparse systems. The number of
systems that has to be solved in this manner equals the amount of
network unknowns plus one. This is an important reason for describing
the electric circuit with as few unknowns as possible.

Another method separates the complex equations (these are the
equations in the solid conductor regions and the electric circuit equations)
from A. This results in dividing the system matrix in a real and a
complex part.

[_Q_L__p__]‘{wa} =[R+jﬂ, (5.261)
B"!C+D[!Y+/N| |S+W]

The system of equations can be written as:

AX=R-BY

AM =V -BN (5.262)
(C+ jD)-{Y + jN)=S+ jW -B"(X + jM) (5.263)

The system can be solved with the unknowns X,M,Yand N by
iteration.

5.9.8 Two examples

In the first example, eddy currents are induced in a conducting plane,
passing between two symmetric inductors (Fig. 5.88). The external circuit
is shown in Fig. 5.82. In the second example an induction machine at
start-up is analysed (Fig. 5.89). Stator windings and rotor bars are
connected as shown in Fig. 5.90. The numbers of additional circuit
equations for the different methods are shown in Table 5.8. The structure
of the matrix is shown in (Fig. 5.90).

Table 5.8. Number of circuit equations.

circuit analysis {ableau MNA CMNA SFG

inductor 13 5 4 2
induction molor 166 46 43 31
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excitation coil (stranded conductors)

\

iY.,

l

\

P B WY

\

solid
moving
conductor

Fig. 5.88. Plot of the equipotential lines of an inductor and a conducting plane
moving at 10 m/s to the right side.

Fig. 5.89. Equipotential plot of a 50 Hz time-harmonic solution for an induction

motor,
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Tree branch

Link

2D FEM model ‘
of the induclion |
machine |

2) b)

Fig. 5.90. Electric circuit of a) the stator and b) the rotor of an induction motor.

circuit
equations

Fig. 5.91. Matrix structure of a 50 Hz time-harmonic solution of the induction
motor example.
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5.9.9 Transient electromagnetic problem
The partial differential equation for a two-dimensional transient magnetic
problem is:
a
V- (WA)- o= A==, (5.264)
To stay in the same notation as in section 5.7 using the relative
reluctivity v, we can write: '

A LA (5.265)
v, & v,
and the functional is:
F(A)=—J{ il —2 2L 437 4 aA]dQ. (5.266)
v, v, &
5.9.9.1 Functional within an element The functional within an
element becomes
(v) (r)
F(A):l f[vf"WAI' ol e Aﬁ}m (5.267)
24 v, v, &
Evaluating the third term yields
oA
ik dQ ZiA NNIdQ-—-—’ (5.268)
a ¥y Ja}  yul a
g
with the matrix entries R*:
i‘;' Voi=j
R = ‘;A (5.269)
—— Y iwjf
v, 12
5.9.9.2 Time stepping The system of equations in matrix-vector
notation can be written by:
KA+RZ—A—T=0. (5.270)

The time discretisation can be applied to the Galerkin approach in the
time domain. The solution is only computed at discrete points in time,
spaced in finite intervals At¢, the time-steps. First order shape functions
are chosen for A and T as functions in time.

Alt)=7A, +(1-1)A,,
T()=T, +(1-7)L,, (5.271)
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with
L =B st (5.272)
L - Al

4 k-l

T=

and
JA JAdr _A,-A,
a o a At
If the Galerkin approach is applied with 7 as the weighting function
then

(5.273)

J'T{K(TA‘ C (1 = T)AH)'{' RA';—:&H_TT; b (] —F R-l}dr =0, (5.274)
(§+5 A, +(E—E)AH —(-ZTLJ-*:L):o. (5.275)
3 At 3 At 33

This corresponds to a standard central difference formula. By
introducing a more general set of weighting functions other difference
schemes can be obtained. (5.275) can be generalised by using the
parametera .

A(t)-arA,-#(l ar)A,_, (5.276)
T(f) = arT, + (1-a7)T,

Equation (5.275) can be written in a general form:
R
(aKaf%]A, +[(1 ~a)K —EJAH —(@T, +(-a)T,)=0 .(5277)

With o =0 the forward difference Euler method is obtained. This
approach is an explicit method because the term KA is evaluated at the
beginning of time interval Af.

R R
Z;Ar =-‘(di +(1—a)1‘,_,)—(K—E £l (5~278)
a =1 gives the backward difference fully implicit method since the

term KA is evaluated at the end of the time interval Af.

(K +5]A, ={aT, +(1—a)r,_,)+5A,_, (5.279)
At At

The Crank-Nicolson scheme is obtained for & =1/2

1 R 1 R

-K+— (A, =laT, +{1- - —K~—]A 5.280

(S B)a cme-ar)-(fr—Jp, G2

and for a = 2/3 the Galerkin scheme of (5.275) is obtained.
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Particular attention must be paid to the choice of the value of o
because it influences the stability and the accuracy of the numerical
results.

5.9.93 Stability and accuracy Stability is important when time
stepping is used for the solution of partial differential equations. By using
the time-stepping formula eq.(5.277), the-scheme is unconditionally
stable for a@21/2. The stability does not prevent oscillations, but
guarantees that oscillations do not grow out of control. An oscillation-free
scheme is the fully implicit method with @ =1 while for all values
1/2<a <1 the implicit scheme oscillates if the time-step Af is too large.

The stability limit for @ <1/2 has the form:
At< y%(AL)’ (5.281)

with

% the diffusivity, AL the characteristic length of the elements and y a
numerical constant which depends on the elements used and on the
choice of a .

The error e, in the approximation of the time derivative is for o =1

and a =0, i.e. for the fully implicit and the Euler explicit methods, of the
order

e, =O(Af) (5.282)
for @ =1/2; i.e. for the Crank-Nicolson method it is of the order:
e, =0((ar)') (5.283)

Therefore, the choice a =1/2 is advantageous, since it corresponds

to an implicit method which is unconditionally stable and gives thus
second order accuracy for the time integration. On the other hand, the
value a =1 gives only first order accuracy for the time integration but
completely avoids numerical oscillations even with large time steps. Thus
a value of @ =1/2 may be used, with a relatively small time step, in order

to obtain an accurate solution. A value of & =1 can be used with a large
time-step to obtain a less accurate solution to estimate the transient
behaviour of the problem in principle.

59.9.4 Slow motion We will discuss motion problems with a static
magnetic field and with a uniform moving Cartesian geometry at
relatively low speed v:

V- (v,V4)+ u,0(vVA) = —u,0VV (5.284)
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Problems considering high speed with the solution of this A-formulation
will be discussed.

The first term of the differential equation is called the diffusion
term. The second term is called the convection term. The right-hand-side
is called the load.

Unlike the previous formulations, the variational principle
corresponding to the solution of the differential equation is not known.
Therefore, a weighted residual method has been applied.

Galerkin approach

The multiplication of the differential equation with the weighting
functions w; yields:

— [V, VAW, dQ- [T-v-Vaw,dQ- [ZVVw,dQ=0 . (5285)
¢] nVo lvo
The magnetic vector potential 4 is written in terms of the basis
functions N, :

A=YN A, (5.286)
J

In a Galerkin approach the same functions are chosen as weighting
functions. The first term is then written as:

- jv(v VA)w,dQ = ZZZ v jVN 'VN,dQ4, (5.287)

a Jal =l

- 7

R

The third term can be evaluated by:
-j—VVw dQ=-YyZyye jN dQ (5.288)

aV, o oV,
;lt')

The second term is:

~ [Zv-Viw,dQ=- szi [v-VN,N,dQ4, (5.289)
g

aV, P e

4

Mu®
The Galerkin approach and the variational technique give the same
result for the diffusion term and the load term. In the case of linear basis
functions, the integral in the convection term becomes:

b +
Mo = L2000 (5.290)
v, 6
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System of equations

The system of equations is given by:

(K+M)A=T (5.291)
This system is not symmetric because:
MY 2 M (5.292)

Appropriate iterative methods to solve the system of equations are
minimal residual methods such as BiCG and GMRes.

GMRes has the problem that the memory requirement increases with
the number of iteration steps. Therefore, restarted versions can be used.
Petrov-Galerkin schemes such as BiCG are fast iterative equation solvers
but have the disadvantage of breakdowns while solving the system.

External circuits

The current density in a moving conductor is calculated as

J=-oVV —-ov.-VA4 (5.293)

In the case of a stranded conductor, the current density is assumed to
be constant. The voltage drop over a stranded conductor with N, turns

moving at the speed v is
v, = ﬂf +—j’ . VAAQ (5.294)
oA, ¥ A4
In the case of a solid conductor, the voltage is assumed to be
constant. The current through the solid conductor is
A
I, = "; v, jav VAIQ (5.295)
If the currents through one or more stranded conductors or the
voltages through one or more solid conductors are unknown, extra circuit
equations are needed to describe the full behaviour of the model. The
choice of the circuit unknowns, the construction of the extra equations
and the coupling terms is done by the signal flow graph methods already
described for the case of time-harmonic magnetic fields. The non-moving
conductors, however, have to be treated in a slightly different way. No
induced effects appear in these conductors so long as the geometry does
not change while moving.

Example

A conductive plane moves between two inductors. If the speed of
the plane is zero, the solution corresponds to the static solution (Fig.
5.92). If motion is considered, the flux lines are pushed away in the
direction of the motion (Fig. 5.93). If speed increases, the flux lines have
less space to pass through the conducting plane. For very high speeds,
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numerical problems result in unstable solutions (Fig. 5.94). In the figure,
a separated closed flux line occurs. Up-winding schemes promise to
surmount this difficulty. For further details please refer to the literature.

Fig. 5.92. Static solution of a non-moving conductive plane.-

Fig. 5.93. Static solution of 2 conductive plane moving at 10 m/s to the right

side.
i
separate closed f(xt line
//
= I\l
= g

Fig. 5.94. Static solution of a conductive plane moving at high speed to the right
side.
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5.10 Post-processing

Using arbitrary potentials instead of physical quantities and the associated
functionals in the formulation of the equations, raises the need for a
closer look at the post-processing. The user of a FEM system desires to
analyse a physical system in terms of field strength, energies, forces,
densities etc. The potential itself does not necessarily have a physical
meaning. In some cases, such as in the electrostatic and in the thermal
analysis, the potential represents the electric potential and the temperature
respectively (Table 5.9). Therefore, most of the interesting quantities in
the post-process are numerically derived quantities. The type and order of
the shape function of the potential over an element (linear, quadratic, etc.)
and the element type (nodal, edge, etc.) determine the achievable relative
accuracy of numerically derived values. The accuracy of the results is
influenced by the discretisation and, related to it, the choice of the error
estimator for an adaptive mesh refinement, if applied. Another difficulty
arises in the calculation of lumped parameters (inductances, reactances,
etc.), used in non-FEM analysis procedures, such as circuit analysis.
Several different definitions of these quantities may exist, as for the
inductance calculation of linear and non-linear energy transducers.

The aim of this chapter is to provide an overview of possible derived
quantities, the necessary formulations and ways of influencing the
accuracy of the resuits.

5.10.1 Potentials

As shown in the previous chapters, the chosen potentials for the different
types of problems do not necessarily directly represent a physical
quantity. The formulations for defining these potentials are chosen such
that their application might impose simplifications in the formulation of
the functionals or the choice of the gauges. A selection of problem types
and the physical meaning of their potentials are collected in Table 5.9.

Table 5.9. Physical meaning of selected potentials.

related to 4

Type of analysis differential equation type of potential physical meaning
electrostatic VIV =— p scalar electric potential
magnetostatic vWid=— 5 vector none, B =V xA
thermostatic AVT =0 scalar temperature
time-harmonic VWA- jood=— J, vector induced currents

magnelic
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The achievable accuracy of all derived values cannot be better than
the accuracy of the computed potentials. The latter is determined by the
choice of the element type, the shape function and the functionals used.

5102 Energies

To calculate particular quantities for the elements of lumped parameter
models such as inductivities, reactances, resistors etc, or to compute local
forces and/or torques acting on bodies present in a magnetic field,
energies are used to determine such quantities. There are various
definitions.

5.10.2.1 Stored energy Energies are global quantities. It has already
been discussed that in the finite element method, using the variational
technique, an energy term, the functional, is minimised. This energy term
does not necessarily have the meaning of a physical energy, for example
a stored energy. Potentials are chosen in such a way that the
minimisations of the related functional approximate the solution of the
partial differential equation. In the case of a Laplace equation, the
functional is:

F(A)=%JV,|VA|2 dQ (5.296)

For a Cartesian, non-linear magnetostatic problem the stored
magnetic energy can be calculated by:

8
W=t j( fv,BdB 4O (5.297)
2/10 AN
or for linear materials, with the material retuctivity v;:
W=t Jv.B*dQ. (5.298)
2/“0 o

Equations (5.296) and (5.297), (5.298) are similar. The total stored
energy in the overall system, as an integration value is more accurate than
any locally derived quantity.

Functionals for other differential equations can have additional
terms in the integrand, but the similarity with an energy formulation is
still maintained. The functional for the Poisson equation includes such an
additional term:

F(A):% [[v,|v,4|’ -2J;—A)dn (5.299)

The second term of the integrand can be thought of as being related

to the energy input from the supply. In linear systems the energy input
from the supply is calculated from the integral over the coil area by:
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{
=—|J,4dQ . 5.300
> 1 (5.300)

For linear systems, the stored energy equals the energy input from
the supply. This only holds if all potentials of Dirichlet boundaries are set
to zero, i.e. no additional flux is forced into the system at the boundaries.
This last expression is useful even for non-linear problems for the
calculation of flux linkages and inductances in special cases, when the
behaviour with changing current is important. The functional used for
problems with linear permanent magnets is:

F(A)=%(V,IVAII —2ﬁ—2AV(va)JdQ , (5.301)
n Vg
Therefore, the third term in the integrand is related to the energy
output from the permanent magnet to the system.
Most electrostatic problems are linear. The stored energy in an
electrostatic model is:

W= g [e.e,B7Q . (5302)
n

5.10.2.2 Co-energy Associated with the energy is the concept of co-
energy (Cartesian geometry, magnetic problem):

B
W, it jv,B=dQ—i jv,BdBJAQ ; (5.303)

Hya 24, a\s
This integral is effectively the "surface under the BH-curve". The
co-energy is useful for force calculation. In problems with linear
materials and no permanent magnets, the value of the co-energy and the

energy are equal.

5.10.3  Local field quantities
As shown in Table 5.9, some local field quantities are directly
represented by the particular potentials. In this case, their accuracy is
determined by:
» the simplifications made to the applied differential equation
the choice of the gauges
the choice of the element type
the choice of the shape function
the accuracy of the equation solver
the quality of the discretisation,

Therefore, the error convergence of these quantities is of the same
order as that of the related potentials. An example to illustrate this:
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Using the 2D magnetic vector potential, the normal component of
the flux density through the edge of an element is always continuous. The
flux through the edge equals the difference of the potentials at the
adjacent nodes (the unit of the vector potential is Wb/m). This allows
calculation of the flux through a line span between two points just by
calculating the difference of the potential value at the end-points.
Practically, this could be applied to the calculation of flux linkages.

5.10.3.1 Numerically derived local field quantities Most local field
quantities, as well as other derived quantities such as force, require
numerical derivatives of the potentials. Using nodal elements, the
potentials are known at each node as a result of the approximate solution
of the partial differential equation. The change of the potential inside one
element is determined by the choice of the shape function:

A=a+bx+cy . (5.304)

Knowing the potentials at the nodes of the elements, the coefficients
a, b and ¢ can be calculated using this basis function. The definition of
the potential now determines the required mathematical operations
vielding the required local field value. In two-dimensional magnetostatic
problems, the vector potential A is defined by:

B=VxA . (5.305)

Using such linear shape functions to approximate the vector
potential, the x- and y-components of the flux density inside a finite
element are calculated as follows:

dA 2
B, =5_=E;_ZC:A: = const.
;A '1' J (5.306)
B =———=———>"b4 =const.
T Ta 28,4

The flux density B inside an FEM model is piecewise constant
(5.306) if a continuous distribution of the vector potential is assumed.
Accounting for this and assuming a small value of 4 as the maximum
characteristic diameter of a finite element, the FEM is convergent
towards the exact solution of order ¢g+1. The constant g describes the
polynomial order of the elements used. With € as the global error, the
order of convergence for the potential solution is

lef<C-#. (5.307)

The factor C is independent of the size 4 of the elements and
depends only on the

o type of discretisation

» choice of shape function
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o smoothness of the exact solution.

Equation (5.307) identifies the convergence problem transferred into
the approximation problem. Using first order linear shape functions the
rate of convergence is of order O(h?). Deriving the field quantities from
the potential formulation numerically results in a rate of convergence
O(h) for those quantities, i.e. a loss in accuracy of one order compared to
the potential solution. Using these field quantities this inherent
inaccuracy influences the results of force calculations. This fact identifies
the difficulty in obtaining accurate field quantities as a problem of the
order of convergence of the numerical method used. To illustrate this
fact, consider a domain containing a single linear material. By applying
Dirichlet boundary conditions of different values to the left and the right
domain border, a constant flux is imposed.

Fig. 5.95. a) Continuous vector potential; b) piece wise constant flux density.

The loss of one order of accuracy due to the numerical
differentiation is inherent and effects all quantities based on such values.

There are three possibilities for possibly increasing the accuracy of
local field quantities for the end-user of an FEM program package:

¢ Compute the model with higher order (shape function) elements.

e Increase the quality of the discretisation (adaptive mesh

refinement).
e Lower the error bound where the equation solver stops.

The latter point is listed for practical reasons, Especially for eddy current
and non-linear problems, a low error bound is absolutely essential.
Therefore, it is a good choice to set a stopping margin close to the
machine accuracy, If a high accuracy of the local field quantity is
required, the relative error of the desired quantity should be monitored.
The actions listed in the first two points of the above list can help to
achieve this.
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e If higher order elements are available in the code, rerun the
computation by increasing the order of the elements in each step.
Plot the desired quantity versus the number of steps. The relative
accuracy can be judged from the convergence of the value towards
a stable value.

e Monitor the convergence of the desired quantity over several steps
of adaptive mesh refinement. Particular attention has to be paid to
the choice of the error estimator. Some error estimators might have
advantages for global quantities, but may not be appropriate for a
local field value. The error estimator has to have effect in the
region of interest.

e The points listed above can be combined.

Another possible way to increase the accuracy of local field
quantities is discussed in the next section: re-calculation of the field
distribution in parts of the domain by a local post-process.

Two further points concerning the accuracy of local field values
must be mentioned.

o Field values in the vicinity of singularities have a large error.

Adaptive mesh refinement minimises the effect of these regions with
respect to the global solution, but the problem does not vanish.
¢ Smoothing techniques must be applied very carefully. They are
popular as they seem to establish a principle in nature: field
distributions are smooth. The danger lies in the fact that almost
all of the smoothing techniques are based on geometric
algorithms rather then on the underlying field equations.
Smoothing may lead to just the opposite of what is intended: a
loss of local field information.

5.10.4  Forces and torques

Analysing electromagnetic actuators such as electrical machines, the aim
is often to find next to the field quantities the electromagnetic forces
generated by the studied device. Various methods are in common use.
Different methods, their application and limits are discussed.

5.10.4.1 Lorentz force A frequently encountered problem is that of a
current-carrying conductor in an external magnetic field. The differential
force equation may be written:

dF = I{d%xB) (5.308)
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where d? is the elementary length in the direction of the current f .
Equation (5.308) is derived from the fundamental force relationship
between two moving charges. It represents the magnetic part of the
Lorentz force. If the conductor is straight and the field is constant along
its length, the differential force may be integrated. In a two-dimensional
magnetostatic finite element model, the field components are located in
the plane, whereas the current is oriented perpendicularly to it. In this
case (5.308) can be simplified to the following expression for the
conductor of length £:

F=BI . (5.309)

Those force equations are theoretically valid only for a conductor in
a magnetic field. However, in practice it might be used even for the force
calculation in electrical machines with many slots containing current,
provided that B is the average value in the air gap. This simplification
already indicates a loss of accuracy, as local information about the field is
not taken into account. This approach combines analytical and numerical
field analysis at a rather simplified level.

5.10.4.2 Virtual work One of the most popular methods for the
calculation of forces is based on the spatial rate of change of the stored
co-energy in the model. The component of the force F; in the direction of
the displacement s is:

7MW W =31
o & @310

The accuracy of the co-energy calculation is rather high because, as
mentioned before, the energy is computed very accurately. It can be
expected that the force calculation based on the co-energy should be
accurate as well, provided the following requirements are met.

* The method is valid for differential small displacements, which

must be translated in terms of the dimensions of the model.

¢ It is assumed that the magnetic flux remains constant in the two

FEM models necessary to compute d .

The disadvantage of this method is the need for two finite element
computations to obtain a single force value.

A corresponding expression for the torque 7' associated with an
angular rotation #is useful for the electrical machine analysis:

T= oW, 4w,

a.J11
é0 dé ( )
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5.10.4.3 Maxwell stress tensor Probably the most common approach to
determine electromagnetic forces is known as the Maxwell stress tensor
method. In contrast to the virtual work method, based on the energy, the
Maxwell stress tensor method describes the forces directly in terms of the
magnetic field strength. This method is advantageous, as forces can be
determined with only one FEM-solution.

The Maxwell stress approach computes the local stress at all points
of a bounding surface and then sums the local stresses (using a surface
integral) to find the overall force. The expression for the Maxwell stress
tensor can be derived from (5.308). In three dimensions the force is a
surface integral:

F =v{TdS (5.312)

where the surface vector dS is taken as the outward normal on S. In two
dimensions, this reduces to a line integral with the magnetic stress tensor
T written by:

(B,’ —l|B|’) BB,
2
T= ! .
BB, (B,’ -5 18 )
The expression given above may be rewritten in terms of the normal
and tangential components of flux density at each point on the closed

contour C along which the line integral has to be evaluated. Therefore the
associated components of force for an axial length £ is:

¢
Fest o -aa

(5.313)

7 (5.314)
B 4 (8,8, + BB

These expressions assume the following notations for the directions
of B, and B, for a contour parallel to the y-axis, and traversed in the
direction of increasing y, B,=B; and B=B,. Also the component values of
(5.313) have units of stress; they do not necessarily give correct local
stress values. However their closed line integral has the physical meaning
of the total force on the enclosed object. The contour must be entirely in
air and not pass through any other material. In many cases the contour
does not need to be closed. Parts of the closed contour may be skipped if
their integral value is negligible. The expressions for the force computed
on a single straight line are:
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_ o
E! - 2#0 I(Bn Bn )il

) (5.315)
F,=—[BBd
H,
The torque on an arc of radius 7 is similarly given by:
ol (BBrdl . ' (5.316)
Hy

Similar expressions may be used for electric field problems by
substituting £ for B and €, for 1/44p.

The advantage of the Maxwell stress tensor method over the virtual
work method recommending only one FEM-solution is lost when the
accuracy of the results is compared. As the method is based on derived
quantities, particular attention has to be paid. The loss of one order of
accuracy compared to the potential solution can lead to large errors,
especially when computing the tangential component F, (5.315) and the
torque T in (5.316). In electrical machines the reason for this is the huge
difference of the field quantities in magnitude when comparing normal
and tangential component. The normal components can differ some
decades. This yields large truncation errors in the computed force.

The practical implementation of the algorithm introduces additional
error sources. The stress values have to be evaluated at specified points
along the contour, usually equidistantly distributed. If such a point is
positioned exactly at the edge between two elements, the numerically
derived B is double-valued (piecewise constant B for first-order shape
function).

The problem of accuracy of the Maxwell stress tensor method and
possible ways of improving it, have been extensively discussed in
literature. Most of the proposed enhancements are based on smoothing
algorithms or on different integration schemes. One of the most common
methods proposes calculation of the force using different contours and
averaging the result, This method can help to evaluate the margin of
error, but it does not give any absolute error bounds or even an
enhancement of accuracy.

5.10.5 Enhanced accuracy of finite element field quantities

It will be focused on the practical application of the static electromagnetic
field solution of Laplace’s equation in a local post-process to increase the
accuracy of an existing solution obtained by the standard finite element
method using first order elements. Advantages and drawbacks are
discussed.
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The Laplace equation V’4=0 in two dimensions, expressed in
polar co-ordinates (r,®) is:
g, a4 154

— S +__
P
,0'A A4 J4
r +r—+—=0
a' & &
Assuming linearity and uniformity, and applying a Fourier series to
€q.(5.317), yields the harmonic function:

A(r, D) =%+ 3 r*{a, cos(n®) + B, sin(n®)} (5318)

n=l

(5.317)

with its coefficients:

a = —NIIA(R,G)) - cos(n®) -dP
R g (5319)
B = 7 njA(R,cp) -sin(n®) dd

The procedure for solving eq.(5.318) describes the solution of a
Dirichlet problem on a circle with given boundary values at its
circumference. The coefficients a, and f, can be calculated using known
potentials A= A(R, D) at the circumference of a circle with radius R.

Now a finite number of N equi-angularly arranged points are applied
onto the circumference of the circle.

AR®)Y=AR,i-¥) i=I)N . (5.320)

With N boundary potential values #; known on the circumference

and according to the properties of harmonic functions the first term in eq.
(5.318) can be written by:

4. =%-1%4 (5.321)
=2 N
The Fourier coefficients are rewritten as follows:
a, = - i A cos(n®,) ,
N'R" [T3)
5 (5.322)

A= T ,ZN.:A' sin(n®,) .

With the Fourier series (5.318) and their coefficients eq.(5.322) the
potential in the centre of a circle can be computed knowing only the
boundary potential values on the circumference of the circle.

Using this approach inside a finite element solution, the value of the
potential of a field point now depends on the solution in several finite
elements. Thus, local numeric errors in single elements have a relatively
small influence on the solution in the considered field point. Applying
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(5.318) derivatives at the centre of the circle can be calculated in a closed
analytical form, avoiding numerical differentiation.

. —ﬂ,—Br——ZN:A‘sm(DI

. (5.323)
! = =B =LZA‘ cos®d,
& .‘!r-l) N ? R i=)

The idea is to adapt the described process, of solving a Dirichlet
problem on a circular surface, to determine the vector potential in a point
P, of a discretised finite element domain (Fig. 5.96). R, is the radius of
the considered circular surface and the dots at the circumference indicate
the points of known vector potential values computed beforehand. These
points do not have to be nodes of the actual finite element mesh. This
feature makes the technique very advantageous to automatic and adaptive
meshing schemes in which the user can not guarantee the control of the
mesh and especially its symmetry.

To obtain the potential distribution at a given contour inside a finite
element domain, multiple circies have to be evaluated. Overlapping
circles guarantee a continuous solution in the considered region after the
post-process.

The numerical shape of (5.318), (5.321) and (5.322) enables an easy
implementation of the procedure in a finite element program package.
The derivatives in the centre of the circle are represented by the Fourier
coefficients. Thus, no additional computational effort is necessary to
compute the flux density in the centre.

Fig. 5.96. Multiple circles to determine the vector potential on a contour.

The local solution of the Laplace equation inside an air gap of an
electromagnetic device, using a Fourier series approximation for the
vector potential, results in a significant increase in accuracy of the
derived field quantities. To compare the results obtained by the local field
evaluation to the conventionally obtained field quantities of first order
elements, Fig. 5.97 shows the computed magnetic flux density derived by
B=Vx A and B, using the Laplace approach. For this application of the
local Dirichlet problem, 24 potential boundary values on the
circumference of the circle were used.
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Applying such field quantities to the Maxwell stress tensor to
compute the local forces acting on bodies inside an electromagnetic field
yields values of higher accuracy. To obtain the torque of an electrical
machine, the local force values are integrated along a contour in the air

gap.
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Fig. 5.97. a) Computed vector potential inside the circular FEM domain and b)
the resulting flux density B, derived by applying the local post-process.

Another approach to compute the torque more accurately, uses the
values of the magnetic vector potential on two concentric circles with
radii R; and R, as boundary conditions (Fig. 5.98). Local field values on

the circular contour C with radius R, <7 < R, are calculated.

Fig. 5.98. Local Dirichlet problem for a cylindrical air gap.

If the inner radius R; is taken as a reference, the general solution of
Laplace’s equation is;

A(r, @)= ZN: a, (%J cos(k®)+ b, (é—) sin(kfb)

4

e, (ﬁ). cos(k®)+ d, (Z:LJ* sin(kd))}

¥

(5.324)

The coefficients ag, by, ck and dj are independently determined for
each circular harmonic. A fast Fourier transformation (FFT) algorithm is
used to express the magnetic vector potential at the boundaries as a series
of such circular harmonics:
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AR, @)= i(a” cos(k®)+ b,, sin(k(b)) ;
';' (5.325)
A(R,®)= Z(am cos(k¢)+b,‘,sin(kd))) '
[ 1 I T o . =
R -RT _ck__ _alr.a_
il ik (5.326)

1 f B e

R\k R\t b‘ =b"'
L(" (" 2l

R‘) Ro} —_ k] L ko |

Once the magnetic vector potential at the contour C is known, the
normal and tangential component of the magnetic flux density can be
determined:

l 1

B.(r,®)= i[ kst = I (k) kb, L cos(ke)

k) ‘

¥

~kc ism(k¢)+ kd —cos(kCD)J

k k4l k4l

(5.327)
B(r,®)= Z[ cos(kd)) kb R sm(k(D)

1

b ksl

¥
+kc,%cos(kcb)+ kd —-&—sm(kcb)) :
r

The tangential force component Fy results in the torque T of the

device. It can be shown (Salon *°, Mertens et al. ") that the value of the
torque is given by

=%i(k’(b,c, o) (5.328)

being independent of the radius » of contour C. It is not necessary to
calculate the normal and tangential component of the magnetic flux
density on the contour resulting in a faster algorithm, when the overall
torque is aimed at. The proposed method can easily be extended to time-
harmonic problems. If all values are rms-values the torque is obtained by
adding the torque calculated using the real- and the imaginary-component
of the solution.

T=T +T. . (5.329)
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This method has its advantage for electrical machine analysis as it is
suited for small air gaps. By using eq.(5.329) the torque is evaluated
directly, without the explicit calculation of the flux densities.

Fig. 5.99. Equipotential plot of the real component solution of a 400 kW
induction motor.

The performance of this method is compared with the classical
Maxwell stress tensor method using a model of a 400 kW induction

machine for tests.

Table 5.10. Data of the 400 kW induction machine.

induction machine data

To ensure

voltage

rated current

rated power

cos @

mm

frequency

number of pole pairs
number of stator slots
number of rotor slots
outer diameter

air gap length
measured torque

0-1950 V
154 A
402 kW
0.91
0-4350
0-140 Hz
2

48

40

60 cm
1.5 mm
Ta = 2733 Nm

accurate results, a good trade-off between mesh
refinement and using the enhanced post-processing methods is necessary.
A relatively coarse discretisation in the air gap of the induction machine
was chosen (Fig. 5.100).

With such a coarse discretisation, the Laplace-based method is less
sensitive to the actual choice of the contour inside the air gap than the
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classical method. The air gap spans a region between an inner radius of
0.186 m up to an outer radius of 0.1875 m. Fig. 5.101 shows the variation
of the calculated torque. Contours with different radii are chosen. For the
Laplace-based method, the inner and outer radii are varied

simultaneously. Therefore, the value of the torque varies symmetrically
towards the middle of the air gap.

%

SR

AV
T
N/

e

Fig. 5.100. Detail of the discretisation in the air gap.

The variation of the calculated torques using the enhanced method is
much smaller when compared to the classical method. It must be stated,

however, that an appropriate mesh refinement scheme would lead to
better results even for the classical torque computation.
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Fig. 5.101. Variation of the torque calculated along different contours inside the
air gap.

The rate of convergence of the relative error indicates that the
required number of sample points for the enhanced method can be chosen
to be substantially fewer than for the classical method. As shown in Fig.
5.102, the smallest relative error is computed with 16384 points using the
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classical Maxwell stress method, instead of 2048 points by using the
Laplace-based approach.

Lol caeee) srang dstos: wom s on sad 4o 202 aAZ: san Le pate s

=—&—  local Laplace method I
—-  classical Maxwell stress 3

el A i i i

r i 3
L] & 8 ] 10 11 12 13 14 16 186
numbsr of sample polnts along contour [2Y

Fig. 5.102. Rate of convergence of the relative error. (Variation of the number of
sample points.)

The same basic idea, as used in the ‘circle’ approach, yields the
local solution for the three-dimensional field. The local field problem is
now defined by the known potential values equally distributed along the
surface of a sphere assumed to be the boundary potential values of the
local field problem. According to the co-ordinate transformation:

x=rsinfcosg
y=rsin@sin g
z=rcosf

a)
Fig. 5.103. a) Sphere with b) co-ordinate system,

a spherical co-ordinate system is applied (Fig. 5.103). Using the Laplace
equation with the co-ordinate transformation yields:



Field computation and numerical techniques 175

LCIPT N o 54

r’[ér[r 5r)+si1190'9 Sin6 2o +sin’96¢’]_0' (5330)
Applying the theorem of the separation of the variables

A(r,0,8) = R(r)-©(8)-®(#) to (5.330), a general form of the functions

R(r), ©(8) and ©(¢) depending on the potential A can be written. Every

solution of the Laplace equation, being finite for all 8, is a solution of:
4_(r.0,4)= (ar* + Br)P=(cos8)- {acosmp + fsinmg)  (5.331)

where m=0(1)0 ,n=m()o, a, b, « and P are constants. P” is the

associated Legendre polynomial of the first kind. To simplify the
notations, the surface harmonics
c,, =P"(cosB)-cosm
. = F. (cosf) ' ¢ (5.332)
s, = P"(cosé)-sinmg
are introduced. Assuming (5.331) to be a linear form, the potential in the
origin is finite. The constants o, (r) and Bny.(r) are linear combinations
of 7" and ¥™", The summation

A=16D=Y S[Pur-ccr @)+ Gy 50,8 1" (5333)

el aem
is a solution of (5.330). Here, the magnetic scalar potential 4 is
completely determined by the constants pm, and gm.. The aim is to
calculate the magnetic flux density at a point using known scalar potential
values in its vicinity. Consequently a spherical volume with known
boundary potentials at its surface around this field point is chosen to
determine the field. The known boundary potentials result, as in the two-
dimensional case, from a previously performed FEM computation and
determine all constants in (5.333). To calculate the magnetic field
quantities at the centre of the spherical volume, the Laplace equation has
to be solved locally and spherically around this field point with radius
r=R. The boundary potential values are available only as single values at
the surface of the sphere. To distribute them equally along this surface,
the spherical co-ordinates ¢ are divided into Jand # into X equal angles

A¢ and A# respectively.

27 = iAng
" : (5.334)
= zAE

k=1
In order to satisfy (5.333) accurately, the numbers of J and X must
be sufficiently large. On the other hand, large numbers increase the
computational expenses rapidly. With respect to the computation time
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and accuracy a good compromise has to be found. Practical values for J
and X are given in the following section.
Assuming ¢ and @ to be the co-ordinates in the local system with

the interesting field point at the centre of the sphere, the coefficients pp,
and gm. can be determined by a Legendre decomposition using the
boundary potential values:

1 @n+l)fn- ’"’):[Zf(ﬂuf%)]

=" J.K2R (n+m) &
P=(cos8, )-siné,
7 1 Qn+lfn-mp& [1 }

Pl " T KR (b 2 ;f(&m,)cos_msék (5.335)
P (cosﬂ ) siné, N\
o1 (2n+1)n—-m} 2

=7 k" l+m) Z[;f(o 4, Jsinme, ]
P (cos6', ) §ind,
Retaining the local co-ordinate system in (x’,y’,z’), and the

magnetic flux density in the original global co-ordinate system, and
calculating the derivatives at the origin of the local co-ordinate system

(Fig. 5.103) using #=x/2 and ¢ =0 in (5.333), yields:
o
dl {0.0,0) ’ d‘
Analogous to (5.336) the derivatives, in y’ are found by taking
f=¢=n=/2and in z’ by taking #=0and g=x/2, in (5.333). With
respect to (5.336), using (5.335) and with the Legendre terms:
P’(cos@)=cos8
P'(cos@)=sin8
the components of the flux density at the centre of a sphere are explicitly
rewritten by:

P-a

- p, (5.336)

(0,0,07

(5.337)

_ 37 [¥[3
B =g ;[}Z:f(ﬂ,,;ﬁl)cos@j sin 9,]

3 F3 Z T |
B,=-p,5J.K'R (sz 6,.9, sm¢) +sin 0,] (5.338)
heons o S{E ) o

Using this local field approach (5.338) by arranging multiple
overlapping spheres at an arbitrary surface or contour (Fig. 5.104), it is
possible to obtain the required local field quantities at this surface with
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the same accuracy as the previously by FEM computed potential values.
The tetrahedron shown in Fig. 5.104 represents a part of the three-
dimensional mesh of the FEM domain.

Fig. 5.104. Arrangement of multiple overlapping spheres to obtain the local field
values on an arbitrary contour/surface across the centre points of the spheres
inside a three-dimensional FEM domain.

Tr
LICH RC

Fig. 5.105. Flux density distribution B; on the front surface of I (see Fig. 5.106),
a) computed by the classical direct derivation of the potential and b) using the
proposed post-processor method.

permanent magnet

Fig. 5.106. Three-dimensional FEM model of the test example,

From Fig. 5.105 the difference between the direct evaluation of the
potential and the new post-process operator is shown. Here B, is
computed for a test example (Fig. 5.106) at the front surface of I" facing
the permanent magnet cube, It is obvious that linear shape functions,
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approximating the scalar potential, result in a piecewise constant flux
density distribution (Fig. 5.105a). Computed forces starting from this
type of solution are unreliable. The local values of B, plotted in Fig.
5.105b show the expected continuous distribution computed using the
new post-processor method.

100.00 ——total lorca direct darivation

~l—totu! force new FOURIER spprosch
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10.00 L [\_‘_4

b d
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0.10 +
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number of elements

Fig. 5.107. Comparison of the convergence behaviour of the FEM potential
solution with both the direct derivation and the derivative-free approach.

In Fig. 5.107 the quadratic convergence, referred to the
characteristic length 4 of a finite element, of the FEM potential solution
and the rate of convergence of the force computations using both the
classical and the new post-processing approach, is plotted versus the
number of tetrahedron elements. The same statement can be made for the
two-dimensional approach. The triangles in Fig. 5.107 indicate the
theoretical gradient of convergence €q.(5.307). The refinement of the
three-dimensional discretisation is performed in such a way that the
elements are of the same shape in every FEM model to obtain a regularly
distributed mesh for all cases. To compute the total force, the Maxwell
stress tensor is used integrating the force density calculated in points
equidistantly distributed by the density D on all six sides of I'. For the
classical approach a density D=40 is chosen and in the case of the new
method, D is set to 7. The sphere parameters are J=K=15. The integration
surface of the force computations is located in such a way that no plane
of I cuts through the nodes of the FEM mesh, If nodes coincide with the
points of the force computation using the classical post-processor
approach, this would result in a larger error due to the troublesome
definition of normal and tangential field components in a node of an
element. The gradient-triangles in Fig. 5.107 indicate the theoretical rate
of convergence for the quadratic and the linear convergence case. It can
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be seen as theoretically expected that the relative error in an energy norm
of the FEM potential solution converges quadratically, referred to the
specific diameter 4 of the elements eq.(5.307), by increasing the number
of first order tetrahedron elements. Due to the analytically described
potential function inside the local field volumes, the resulting overall
force using this approach is of the same order of convergence. Therefore,
no loss of accuracy of the derived field quantities occurs. The
convergence of the total forces, computed by the classical approach,
indicates the expected linear behaviour. The accuracy of the computed
values is influenced by the numerically-obtained derivatives. This shows
that the results obtained by the classical method are inherently inaccurate
when compared to the accuracy of the potential solution.

The use of the proposed approach to enhance the accuracy of
computed field quantities starting from an existing potential solution
demands an additional step during the post-processing of the FEM
analysis (Fig. 5.108).

FEM
polential solution O(h?)

derivative free

direct derivation
approach

O(h) field quantities: o)
« flux density

« field strength

* flux

force computation:

+ Maxwell stress tensor
* virtual displacement
« other methods

Fig. 5.108. Additional step during post-processing to enhance the accuracy of
derived field quantities.

Having obtained a FEM potential solution, the user only has to
define the surface of integration I' on which the field quantities or forces
have to be calculated. Defining an arbitrary contour allows the
computation of field quantities or forces along it as well. For each plane
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or contour the density D, the sphere parameter J, X and the radius R have
to be set. The sphere parameter are problem-dependent and related to the
geometry of the device, i.e. the air gap width. The planes or contours
should be centred in the air gap. A suitable value for the diameter of the
single spheres is about 90-95 % of the air gap width to have as many
tetrahedron finite elements inside the sphere as possible. Including only
one finite element in the sphere results in no enhancements in accuracy of
the derived quantity. To ensure a continuous field solution, the density D
should be chosen in such a way that the spheres overlap (Fig. 5.104). For
the distance between two points on the surface of integration, it is suitable
to choose the radius of the sphere.

J=K=4
Fig. 5.109. Spheres with different numbers for the parameter J, K.

To define the number and position of boundary potential values
distributed on the surface of each sphere, the parameters J and K have to
be chosen. To ensure uniformly distributed boundary values J is set equal
to K. In accordance with the results of Fig. 5.105 and other test
calculations a number J=K=[10 ...20] is sufficient to meet the ratio
between computational costs and accuracy. Fig. 5.109 illustrates by
different J=K the position and number of boundary potentials to
approximate the local field inside a sphere.

5.10.6 Inductances in magnetostatic problems

Quantities, such as inductances, resitances, etc. may be determined from
a numerical solution by several methods. It is just as in a laboratory,
where a quantity may often be measured in many ways eventually leading
to different results. Modelling implies the simplification of the complex
physical phenomena determining the behaviour of a technical device. A
FEM model of a device serves the purpose of predicting certain aspects
of its behaviour while neglecting others. The first simplification is
introduced by the choice of the formulation of the equations to solve.
However, even if the basic formulation is appropriate, different results
may be obtained in the post-process if inappropriate definitions of
quantities are employed. This effect is illustrated by the calculation of
inductances using a magneto-static analysis.
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5.10.6.1 Linear models Consider a simple iron core inductor drawn in
Fig. 5.110. The aim is to compute the inductance of this device to be used
in an equivalent electric circuit. It is assumed that the core is loss-free
without leakage flux and the winding end-effects are neglected. A two-
dimensional linear, electromagnetic analysis of the device is applied.

E aymmelry axis

winding resistance

winding  air inductance

Fig. 5.110. Iron core inductor and equivalent electric circuit.

Two definitions of the inductance can be found: one based on the flux
linked with the winding (5.339) and one based on the energy stored in the
inductor:

L="" (5.339)

j‘[ J'H-dB]dV
=928  d (5.340)

with N the number of turns, [ the terminal current and ¥ the volume of the

device.
The flux linkage with the winding in (5.339) can be determined
from the vector potential inside the winding area:

® = [BdS (5.341)

with S the surface in which the flux is penetrating. Based on the
definition of the magneto static vector potential (B =V x A ), the flux can
be determined over the vector potential integrated along the length of the
winding 4l :
O=dAd . (5.342)
1
Equation (5.342) can be simplified when considering a two-

dimensional Cartesian geometry, with no variation of the field and
geometry in z-direction:



182 Field computation and numerical techniques

N-®=N-1-(4,, -4,) (5.343)
with / the length of the device in z-direction and 4 the average value of
the vector potential at the right and left side of the winding. Due to the
symmetry in the given device and the discretisation of the winding cross
section, it can be written:

A4,
N-®=2.N.l.- (5.344)

24,

[
with n the number of elements over the cross section of the winding and
A the surface of element &. In the general case (no symmetry), the flux

linkage can be extracted from the FEM solution via an mtegrzmon over
the winding cross sections by applying:

[4-JdQ
Wl (5.345)

with J the current density in the fractional winding cross section dQ,

with Q the surface of the winding cross section (including both sides of

the winding). This last equation automatically accounts for the number of

turns and the orientation of the different sides of one winding, as the sign

of both the vector potential and the current density are related. The value

for the inductance can be calculated from:

. [4-Jd0

L= = ! Sl (5.346)
When comparing this equation with the magneto static energy

functional, it can be recognised as the term for the linear energy, i.e. the

energy supplied from the source:
- 2J—“4]d§2 . (5.347)
V,

o

F(A):%n v,

A sinusoidal variation of the source current will also result in a
sinusoidal change of this energy; the system is linear.
In a linear analysis (v, =const.), the calculation of the inductance

via the stored magnetic energy in the model, (5.340) gives the same
result, The stored magnetic energy per unit volume can be represented as
the surface above the material characteristics (Fig. 5.111).
The amount of the stored energy per unit volume is thus
geometrically:
B-H O®ON.I

W, = - ; 5348
= 2 (5.348)
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A sinusoidal variation of the source current yields a sinusoidal
variation of the stored energy. Hence, the calculation of the inductances
based on flux linkage and stored magnetic energy in the model give equal
results.

H —

Fig. 5.111. Representation of the stored energy in the model at a defined
operating point.

This "linear" definition of an inductivity is equivalent to a
measurement by a ballistic flux meter.

5.10.6.2 Non-linear models For the computation of the inductance
based on the flux linkage, (5.346) can be applied without changes.
However, this value differs from the value of the stored energy computed
by (5.340). The material is non-linear (Fig. 5.112). A sinusoidal current
excitation does not yield a sinusoidal change of the stored magnetic
energy due to the saturation effect, Using eq.(5.349) is not appropriate for
this sinusoidal operation because it does not consider the effect of higher
harmonics. Signals modulated at non-linear characteristic do contain
higher harmonics. Ferromagnetic saturation usually generates harmonics
of threefold fundamental frequency.

W = f(jH-dB)dV (5.349)

H —

Fig. 5.112. Stored energy (5.349) in a non-linear model at a defined operating
point.
The calculation of the stored energy is equivalent to an impedance

measurement, which includes the measurement of the terminal voltages
and currents. If sinusoidal current is applied, there will be odd harmonics
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in the voltage waveform, which cannot be determined by a magneto static
analysis.

5.10.6.3 Example: Inductor for a fluorescent lamp To illustrate the
problem, consider a ballast inductor from a circuit of a fluorescent lamp
(Fig. 5.113). The inductor is about seven times longer than it is wide. It
can be treated as a two-dimensional Cartesian problem neglecting end-
effects.

Fig. 5.113. Half symmetry of the inductor.

The design goal for the inductor is twofold: stabilise the current
during the heating phase for the electrodes of the lamp and provide a
defined over-voltage when the starter opens in order to ignite the
fluorescent lamp. o

_

~m lamp

1
O

Fig. 5.114. Circuit of a fluorescent lamp and shape of the inductor.

The results of the inductance computation (Fig. 5.115) using both
definitions clearly indicate the difference that occurs for the saturated
operation points of the device. This difference is useful in this case as it
allows determination of the linear operation range of the device.
However, the value of the inductance should be determined based on the
flux linkage.
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Fig. 5.115. Two-dimensional flux plot and the computed energy.






6 Coupled field problems

The term “coupled problem” is used in many numerical approaches and
applications. Various coupling mechanisms in a different context, such as
field problems with electrical circuits, methods in a geometrical or
physical sense, couplings in time and/or coupled methods to solve a field
problem, are meant with this term. For a proper classification of these
problems and related solution methods a systematic definition is
proposed. It can be used in the evaluation and comparison of solution
methods for various problems.

A coupled system or formulation is defined on multiple domains,
possibly coinciding, involving dependent variables that cannot be
eliminated on the equation level (Zienkiewicz '**). In the literature, this
notion is often linked to a distinguishing context of various physical
phenomena or methods, without further specification. This paper
proposes a classification scheme in which the numerical models meeting
the proposed definitions can be put. This may lead to the definition of a
series of test problems for specified coupled problems and solution
algorithms. A classification scheme can simplify the comparison of the
various examples and approaches out of the literature that solve such
coupled problems.

Next to "coupled problems" the terms "weak-" or "strong-coupled"
will be discussed to propose a more homogenous terminology.

6.1 Coupled fields

To start with a definition of standards or a classification of technical
physical problems, the properties and the interdependencies of such
phenomena must be considered and discussed.

A general and simplified structure of considered field problems is
drawn in Fig. 6.1. Here, the link between the single fields is determined
by material properties depending on the corresponding field quantities, If
the field blocks represent numerical methods to solve the single problem
in two dimensions, further couplings to extenal equations such as
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electrical circuits, magnetic or thermal equivalent circuit models are
possible to complete the scheme.

The link between the drawn blocks is, in the context of coupled
problems and its numerical solution, a computer model or method. The
following question is in which way the physical phenomena have to be
considered in an overall solution. From the idea of how to link the effects
numerically, a classification of the methods in this sense can be
performed.

The coupling of magnetic field equations, described by a partial
differential equation (PDE) and the electrical circuit equations providing
algebraic expressions for the electrical current densities, can be
considered as a special type of coupled problem.

dilferenliel equetion |
of molion :

sistionery electrical
flow field

Fig. 6.1. Simplified structure of coupled fields.

In general, more than one independent physical field variable is
involved. The field variables for stationary problems are present in a set
of PDEs, or in the transient case in ordinary differential equations (ODE).
The coupling is often non-linear and this results in a complicated
numerical solution process.

Fields can be described by differential equations. A general form of
a differential equation has to be studied to understand the parameter
coupling between equations. Equation (6.1) represents the general form
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of a differential equation with its possible coefficients in the particular
terms. In coupled fields problems, such coefficients are field dependent
and represent the link between the various field types, such as
magaetic/thermal etc.

5]
aaf -V-(AVf) +nVf +of =g (6.1)
' |
5. source
4, absorption
3. convection
2. diffusion

1. parabolic, transient term

The first term characterises the equation being parabolic. Stationary
equations do not contain this term (% =0). In Laplace’s equation terms 2
and 5 are present. To obtain the Helmholtz equation, term 4 can be
added. For these two types of equations, a variational formulation exists.
The 3™ term is typical for problems considering motion effects,
eq.(5.284).

The coefficients in (6.1) are usually derived from given material
characteristics. For example, temperature dependent material properties
of permanent magnet material can be used to define a coupled
magnetic/thermal field problem. Within a field problem definition, the
characteristics vary locally.

6.2 Strong and weak coupling

In general, it is possible to distinguish between the coupled problem in
two ways, in its physical or its numerical nature. Very often a coupled
problem is called either

e strong, or

e weak.

In the physical sense, the strong coupling describes effects that are
physically strongly coupled and the phenomena can not numerically be
treated separately. If numerical formulations exist, the coupling can be
found in the governing differential equations due to the coupling terms.
The weak coupling describes a problem where the effects can be
separated. The problem with this definition is obvious: If coupled
problems are studied, it is not very well known how strong or weak they
are physically coupled; this is the desired answer expected from the
analysis of the overall problem. For example if the material property
describing parameters are non-linearly dependent on the field quantities,
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the coupling, (strong/weak) can even change with varying field quantities
and the field quantities are the result of the analysis. Therefore, the
definition of strong/weak coupling should be chosen according to the
numerical aspects instead of their physical nature. Choosing for the
numerical aspects, it is possible to have a combined strong/weak coupling
of field problems. This means that the strategy of coupling can vary, and
thus the methods/models, while solving the problem.

Numerical strong coupling is the full coupling of the problem
describing equations on matrix level. The equations of all involved and
modelled effects are solved simultaneously. This implies that the
coupling terms are entries in the coefficient matrix as well.

The numerical weak coupled problem is understood as a cascade
algorithm, where the considered field problems are solved in successive
steps and the coupling is performed by up-dating and transferring the
field dependent parameters to the other field definition before solving
again.

Since the problems cannot be distinguished by means of elimination,
a bi-directional influence exists. The sensitivity of a sub-prob&m to
changes of the variables of the studied problem can differ strongly, It is
difficult to quantify a threshold for separation of both groups, and
therefore the separation may be considered as somewhat subjective. In
this respect, the time constants of the sub-problems play an important
role. Usually the thermal and mechanical time constants are several
orders larger than the electromagnetic time constants. So, on a short
term, the problem with a larger time constant can be considered as weak
coupled. But this is not true if the stationary solution is of interest.

6.2.1 FEM coupling of two fields
In this section the strong coupling FEM equation system of a
magnetic/thermal problem is derived. For simplicity it is assumed that
both field problems are defined on the same mesh. For a more realistic
coupling, projection methods can be applied to enable the field
definitions on different meshes. This approach results in additional
coupling terms in the final coefficient matrix. For further simplicity, the
material’s properties v and k are assumed to be independent of 4 and T
respectively. The coupling of the fields causes the remaining non-
linearity by the loss mechanism.

The magnetic/thermal coupled problem is modelled by a set of two
equations:

oV'A— ja-ocd=-J,

P, (6.2)
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It is assumed that the source term of the thermal equation consists only of
joule losses:

2 42
qo=q,,.,.=p-J‘(A)=p~[J:+a:T’f) : (6.3)

The first term will appear on the right-hand side of the system. The
second term, the eddy current losses, have to be linearised and represent
the coupling term with a non-linear coefficient:

g, =pJt + (%)A = pJ? +(200' )4 = pJ? + m(4)4 (6.4)
Written in matrix/vector notation eq.(6.4) is rewritten as:
e TSNS S A :
wWi—joo 0| 1 J, S 6.5)
m el T | pr

There is a coupling present through the coefficients, although there is a
zero entry in the off-diagonal of the magnetic equation. Applying the
Galerkin approach results in an integral per element of the form:

LT wCRIET (e

For two-dimensional first order elements this yields six algebraic
equations:

- - . m .= .-

* k% 0 0 0j(4] (D] |0

* 2 x 0 0 0f(4,) (@] |0
P R E N R s 1S M H
M K ||T F, + + + T & 0

+ + + **x /T |®] |0

+ + & * ¥ *[IT] @ |0

The first three equations are complex, the last three real. The entries
marked with an * are the same terms that would be found in the de-
coupled problem. The terms marked with a + result from the eddy current
heat source term.

6.2.1.1 Non-linear iteration A method of handling the remaining non-
linearity, is the Piccard iteration or successive substitution. The block
iteration scheme can be given by:

stepl solve the magnetic equation (with relaxation) A,"' N ( X : )-x . F:

step2 calculate the heat source terms M A,”' or M*A4*
(]
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step3  solve the thermal equation (with relaxation) 4 _ e} I k Ak(+])
I;*_(Kr) 'Fr -M A:1>
step4 check convergence

Every loop involves the solution of two systems of equations in
successive steps. For the calculation of the heat sources, the magnetic
solution from stepl can be employed (Gauss-Seidel-like algorithm) or the
magnetic solution of the previous loop (a slower Jacobi-like algorithm).
The relaxation of the iterations proves very important. An adaptive
relaxation parameter can reduce the number of iterations significantly. A
faster convergence can be expected applying Newton iterations.

6.3 Coupled problems

The overall term coupled problems considers the coupled fields and in
addition includes the coupling of methods as well. The link between
different methods, hybrid methods, to solve a field problem, for example
using the combination of finite element and boundary element method, is
understood as a coupled problem.

stator end-winding

Fig. 6.2. Material mesh of end-ring and bar-ends and coil meshes of the stator
end-winding of an induction machine.

Or the classical analytical machine theory delivers models that can
be combined with a numerical technique in order to form an overall
coupled model of higher accuracy. For example the computation of end-
winding effects, using a three-dimensional FEM model, to extract the
parameters for an equivalent circuit model, can be seen as an approach of
coupled models as well (Fig. 6.2). With respect to computational efforts,
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for example for dynamic simulations of motor models or observer models
for the machine control, the coupling of those methods is advantageous to
obtain an accurate but simple overall model of the machine.

Observing problems in the transient modelling of relative motion of
machine parts such as in a rotating motor, a possible solution of this
modelling problem can be a coupling of geometries by element types
with special properties. Overlapping shape functions can be used to join
different meshes of a FEM model and this can be understood as a coupled
problem.

A further example of this type of problem, the coupling of
measurements with a numerical model, can be given. The basic idea in
this type of problem is to measure inaccessible parameters and to use
them as input for the numerical field computation. Such parameters are
mainly non-linearly dependent on the field quantities and their
interdependency from them is unknown. For example material data
obtained by measurements are approximated by interpolating polynoms
and can be used in this numerical format for the field computations.
Look-up tables with measured data samples are possible as well.

6.4 Classification of coupled field problems

After this first more or less subjective judgement of the various coupling
mechanisms, in the following discussion the coupled problems are
distinguished with respect to physical and numerical aspects. The single
involved types or mechanisms of coupling the various fields are
described here as sub-problems with specific properties. It will be
concluded with a matrix systematic. The matrix entries distinguish
between the problem, the model description, the coupling mechanism, a
proposed iteration scheme and a proposed method for solving the overall
field problem.

6.4.1 Sub-problem extent: domain/interface

The different interacting physical phenomena described by the coupled
problem are defined on partially or totally overlapping domains. For
example thermo-electromagnetic problems belong to this group. For the
electromagnetic problem definition the surrounding air has to be
modelled. The same domain is considered in the thermal problem by
special boundary conditions such as heat transfer due to convection or
radiation boundaries. By using the FEM, different meshes for each sub-
problem can be used. The interaction takes place through interface
equations. The involved field problems can be numerically strong, i.e. on
matrix level, or weak coupled, computed in a cascade algorithm.
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In a second class, the interaction of the fields is described by
interface equations of the sub-problems. A heat transfer or cooling
problem with different models for a heated object and the cooling fluid
belongs to the second group. The group determined by overlapping
domains is sometimes referred to as “class I’ and the interface group as
“class II”.

6.4.2 Sub-problem discretisation methods: homogenous/ hybrid

It is sometimes advantageous to apply different discretisation methods for
the involved fields. The methods used can be the FEM opposed to BEM
or FEM methods with different types of elements to result in a hybrid
method. Analytical models can be considered. The addition of algebraic
equations originating from equivalent circuit models is possible as well.
For example, a two dimensional FEM model to compute the temperature
distribution inside an electrical machine can be extended by an equivalent
thermal circuit model to consider the heat transfer in the axial machine
direction. In this way, a quasi three-dimensional approach is obtained by
the coupled methods. The combination of different FEM models with an
additional analytical model is possible. External electric circuits\can be
coupled to consider the voltage or current-driven energy source. "\

6.4.3 Numerical iterative solution methods: full/cascade algorithms
Due to the nature of the physical sub-problems and the chosen
discretisation method, differing numerical properties can be linked to the
equations descending from the sub-problems. A variety of numerical
methods can be chosen to solve the single sub-problem. Most of them can
be regarded as block iterative schemes. It is possible to put all the sub-
systems in a single matrix, with off-diagonal blocks mathematically
describing the (linearised) coupling. This can be considered as a
numerically strong and thus fully coupled approach.

On the other hand, several blocks can be solved separately with a
well-suited equation solver. Not considering a possible parallellisation,
the solution of the sub-problems is usually obtained in successive steps in
a “cascade” algorithm. The newly obtained part of the solution can be
used immediately in the next step of the iterative process. Other suitable
solution techniques are domain-decomposition (DD) algorithms.

6.4.4 Classification matrix

The above remarks on the classification of coupled problems to build up
a matrix systematic underline the difficulty of putting all the mechanisms
with respect to their different nature into a single systematic. The
developed matrix shows couplings between entries in the horizontal as
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well as in the vertical direction (Table 6.1). Bi-directional links to other
entries are possible as well.

The columns of the matrix represent the mentioned differences of
the considered problems with its coupling mechanism. The rows of the
systematic represent the proposed types of problem to put into the
appropriate columns. .

With respect to the geometry, in the first column the studied
domains have different properties, such as strong differing material
characteristics, The numerical sub-problems are described by partial
differential equations (PDEs) and the coupling of the systems of
equations is defined by its boundary conditions or interface equations.
Depending on the condition of the single sub-problems, a full coupling
and weak coupling by cascade algorithms is proposed. For example a
hybrid FEM/BEM can be used to solve the overall field problem or in the
case of strong differences in the condition of the sub-problems domain
decomposition (DD) algorithms, a weak coupling can be employed. Here,
an ambivalence of the overall problem can be noticed. Using a hybrid
method can be considered as a coupled method and the DD as a weak
coupling of physical systems.

The physical nature of the field sub-problems is considered in the
second column. Examples of this are coupled magnetic/thermal or other
field combinations. The fields can be described either by PDEs or by a
combination of PDE and algebraic equations, if equivalent circuit models
are used for one of the sub-problems. The coupling is mainly performed
by the exchange of the material parameters and source terms or directly
by the circuit equations; for example if external electric circuits are
considered. For the solution, numerically strong and weak coupled
iteration schemes can be applied.

Hybrid methods are put into the third column. The coupled
phenomena have different numerical properties. All possible coupled
methods such as FEM, BEM, magnetic-, thermal-equivalent circuits as
well as the classical analytical field theory coupled to modern numerical
techniques, are put to this matrix entry. The model description of the
overall problem can be done by coupling PDEs, circuit equations,
analytical methods or other methods.

The difference of behaviour in time of the coupled effects considers
the last column of the matrix. Here, all the transient problems can be
found. Simulations with respect to the differential equation of motion, an
ordinary differential equation (ODE) are put into this matrix entry.
Various methods are suited to solve such in time-coupled problems.
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7 Numerical optimisation

The design process of electromagnetic devices reflects an optimisation
procedure. The construction and step by step optimisation of technical
systems in practice is a trial and error-process. This design procedure
may lead to sub-optimal solutions because its success and effort strongly
depends on the experience of the design engineer (Fig. 7.1).
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Fig. 7.1. Parameters affecting the design.

To avoid such individual parameters and thus to achieve faster
design cycles, it is desirable to simulate the physical behaviour of the
system by numerical methods. In order to get an automated optimal
design, numerical optimisation is recommended to achieve a well defined
optimum.
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Optimisation of electromagnetic devices turns out to be a task of
increasing significance in the field of electrical engineering. The term of
Automated Optimal Design (AOD) describes a self-controlled numerical
process in the design of technical products (Hameyer ). Recent
developments in numerical algorithms and more powerful computers
offer the opportumty to attack realistic problems of technical importance
(Pahner *).

7.1 Electromagnetic optimisation problems

The distinctive feature of this type of optimisation problem is its
complexity, which results from a high number of design parameters, a
complicated dependence of the quality on design parameters and various
constraints. Often the direct relation of the desired quality of the technical
product on the objective variables is unknown. Stochastic Optlmlsatlon
methods in combination with general numerical field computatlon
techniques such as the finite element method (FEM) offer the most
universal approach in AOD. This section discusses methodotogy,
characteristic features and behaviour of optimisation methods.

To be able to select the appropriate optimisation algorithms to form
an overall design tool together with the numerical field computation, the
properties of tygncal electromagnetic optimisation problems will be
discussed (Rao °*, Pahner *). Electromagnetic design and optimisation
problems reflect mamly the following categories:

e constrained

e problem type:
parameter- or static optimisation, f(x)— min.

(] trajectory, or dynamic problem, f(%,x)—> min.
non-linear objective function
design variables:
real
[[] mixed real/integer
multi-objective function
interdependencies of the quality function and the design
variables are unknown; no derivative information available
¢ the quality function is disturbed by stochastic errors caused by
the truncation errors of the numerical field computation method.

In reality electromagnetic optimisation problems are constrained due to
the various reasons mentioned in chapter 2.2. Nowadays optimisations
are performed mainly as static problems. Numerical optimisations require
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huge amounts of computation time. Therefore, the optimisation as aimed
at here, combined with the FEM, of the dynamic system behaviour is not
yet performed. For transient problems an evaluation of the quality
function by numerical methods (FEM) is too time consuming.
Considering mixed real/integer design variables results in long
computation times as well. The tick boxes in the list that are not marked,
represent developments for the future. The optimisation problems that
can be solved will grow with increasing computer performance as well.

7.2 Optimisation problem definition

In general, optimisation means to find the best solution for a problem
under the consideration of given constraints and it does not mean to select
the best out of a number of given solutions. In other words the definition
of an optimum is:

Define a point xg=(x}, X3 ..., x,)” with the independent variables x),
Xy, ..., X, in such a way that by their variation inside the admissible space
the value of a quality function Z(xy) reaches a maximum or a minimum.
The point x, is described as the optimum.

This definition in mathematical terms:

Minimise a quality function

Z(x)=Z(x,,...x,) > min.
considering

g(x)<0 j=I)m

h(x)=0 j=I()p

The g; are called inequality and the A; equality constraints. Any
constraint can be determined in one of these forms. Constraints represent
limitations on the behaviour or performance of the design and are called
behaviour or functional constraints, whereas physical limitations on the
design variables (e.g. availability, manufacturability) are known as
geometric or side constraints. If an optimisation problem with only
inequality constraints g{x) < 0 (Fig. 7.2) is considered, all sets of values x
that satisfy the equation g{x) = 0 form a (N-1)-dimensional hyper-surface
of the design surface, the constraint surface. The constraint surface splits
the design surface into two basic regions: the feasible or acceptable
region with g(x)<0, and the infeasible or unacceptable region with
g{(x)> 0. If, during the progress of the optimisation, a design vector lies
on a particular constraints surface, this constraint is called an active
constraint.

(7.1)
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Fig. 7.2. Constraint surfaces in a hypothetical two-dimensional design space,
with side constraints (g; and g;) and behaviour constraints (g; and g,).

The independent variables are the design parameter or object
variables. Fig. 7.3 shows the shape of a two-dimensional quality function
with the global optimum and difficulties such as saddle points and' local

extremum.
global optimum
/ uddle
A,

local extremum

z(xh x?)'

Fig. 7.3. Quality function with two object variables.

To obtain commensurable criteria for the generation of the design
variations and to support a simplified formulation of the stopping criteria
of the algorithm, the design variables should be transferred into a
normalised form:

X, =X X, ~X

x, =2 or x =—t——I° (7.2)
xl.r xM

where x4 is the original parameter with its given physical dimension, X;/
the lower bound of the parameter variation range, while x;. denotes the
actual parameter variation range. If no lower or upper bound of the
parameter is given, the design variable can be normalised to its initial
value x;.

The appropriate formulation of the quality function represents a
particular problem. All design aims must be formulated in this single
function and all object variables must be implemented. Multiobjective
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optimisation extends the optimisation theory by permitting multiple
objectives to be optimised simultaneously. It is also known under
different names, such as Pareto optimisation, vector optimisation,
efficient optimisation, multicriteria optimisation, etc. One way of
formulating a single objective function is a weighted linear combination
of the ¢ different objective functions:

F@=Y 74 (7.3)
where % denotes a weighting factor best formulated with the properties
yeIR, 0<y,<l, 37 =I (1.4)

fal
and f{(x) are the individual objective functions. In practice, the choice of
the weighting factors may already influence the result of the optimisation.
It is often not straightforward to select a single fixed weighting factor for
each objective, especially if the objective function is erroneous or if no
particular preference is given to one of the objectives.

7.3 Methods

In general, numerical optimisation algorithms are iterative methods,
constructed to reach the desired optimum in successive steps. This is
performed following particular rules to vary the object variables and to
determine the search direction. The various algorithms differ only in the
choice of step-length, determination of the search direction and in the
choice of a stopping criterion. A general form of an optimisation
algorithm can be given by applying:

step 0: Choose a start-vector X in the admissible space and set the
counter of iteration k=1.

step 1: Evaluate the solution-vector according to a quality function.

step 2: Check whether a stopping criterion is fulfilled. If yes, stop the
optimisation; if not, set k=k+1.

step 3: Generate a new solution-vector by variation of the objective
variables using a suitable step-length and search direction.
Continue with step 1.

With the given properties of the electromagnetic optimisation
problems, the requirements of the optimisation algorithms can be
formulated. Numerical methods have to be examined with regard to the
following criteria:

o reliability

¢ robustness

» insensibility to stochastic disturbances
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application range

accuracy

stable solutions

performance.

Optimisation algorithms can be classified into:
o deterministic or stochastic and

o direct or indirect methods.

Deterministic methods are basically local optimisation methods,
often based on the construction of derivatives or approximations of the
derivative of the objective function (Fletcher *°, Bertsekas '°, Rao *).
Such pradient based methods, e.g. Conjugate Gradient (CG), Newton,
Quasi Newton, Broyden-Fletcher-Goldfarb-Shanno (BFGS), efc. are very
popular, as they are effective and converge to the local optimum in a
small number of steps. This low number of quality function evaluations
would be ideal when applying a computationally rather expensive FEM
analysis to evaluate the objective function. If no analytical objective
function exists or the derivative is difficuit to obtain, the use of these
methods is not appropriate. Furthermore, these methods are very sensitive
to stochastic disturbances, especially present in the derivative information
they are based upon. Most deterministic methods additionally require the
transformation of a constrained optimisation problem into an
unconstrained one. In the case of a multimodal objective function, as is
often the case in multiobjective optimisations, these methods are unable
to find the global minimum (optimum).

An effective approach to compute the sensitivity information during
a FE-analysis is introduced to field computation by Park et al. 8. 87, the
method of adjoint variables. This method was previously successfullﬁy
applied in electronic circuit optimisation (Director & Rohrer =
Vandewalle et al. 7). Here, the sensitivity of the objective function with
respect to a set of design parameters can be computed with only two
solutions. This basically requires the development of a mesh generator
and/or solver specialised for a particular optimisation task (Dappen 2
Ramirez & Freeman %),

In general, the human interaction involved in formulating an
optimisation problem, in particular in finding the derivatives, is a
considerable economical factor when evaluating the efficiency of any
optimisation method. The preparation for such an optimisation task might
require weeks, while the execution of the actual optimisation run is a
matter of minutes. Over the past years, research has been carried out for
achieving automatic differentiation of computer codes. The idea is to
provide first and higher order derivatives of coded vector functions,
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without human interaction. A variety of automatic differentiation
software is already available, such as ADIC (Bischof et al. Y, ADOL-C
(Coleman & Jonsson 26y PCOMP (Dobmann et al. 33), etc. At present,
software code contained in a single file with up to 10.000 lines of code
can be automatically differentiated.

Stochastic optimisation methods, on the contrary, such as simulated
annealing, evolution strategy and genetic algorithms, do not require
derivative information. Any kind of design constraint can be
implemented in a simple manner, by just rejecting a design that violates
any constraint or by using penalty terms in combination with the
objective function. These methods are capable of handling large
dimensional optimisation problems and are less sensitive to stochastic
disturbances of the objective function value (Kasper §1). The major
drawback of these methods is the large number of function evaluations
required when compared to deterministic methods. This fact has, in a first
view, an even greater impact when considering FEM based objective
function evaluations. The first combinations of the finite element
technique and stochastic optimisation methods considered partial models
only (Preis & Ziegler ®, Mohammad **). One of the first publications
reporting the application of a stochastic method to optimise an entire
electrical machine is reported by Hameyer *’. Since then, a large variety
of optimisation problems have been solved using the combination of
stochastic methods and finite element function evaluation (Palko *).
Although the plain execution time of such optimisations is large when
compared to deterministic approaches, the simplified set-up of the
optimisation task and their ability to find the global optimum make such
an overall optimisation procedure attractive.

The rather high computational expense of the FEM has always
resulted in attempts to reduce the number of function evaluations by
applying statistical methods to sample the search space efficiently. A
variety of methods can be entitled as indirect, as the optimisation
algorithms are executed on an approximation of the real objective
function. The combination of the Response Surface Methodology (RSM)
and Design of Experiments offers a whole set of statistical tools not only
to optimise a design, but also to evaluate the main and interactive effects
of the design parameters (Box & Draper '”). Only a few applications of
this method have been reported in electromagnetics in conjunction with
FEM function evaluations (e.g. Brandiski et al. '**°). A major drawback
of these methods is the fact that due to the use of first or second order
(global) polynomials, there is only a remote possibility of finding the
global optimum in a search space with several local optima. This problem
has recently been relaxed by the application of radial basis functions for
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the approximation of objective functions. The first applications,
employing the so-called General Response Surface Method (GRSM)
have been introduced to the electromagnetics community by Alotto et
al.» >4 The experience has shown, however, that these methods are
applicable to rather low dimensional problems only, as their practical
efficiency deteriorates with a high number of design variables. Other
methods utilise the derivative information made available by the
approximation based on radial basis functions, as reported in Suykens &
Vandewalle '®. These methods increase the probability of finding the
global optimum present in the approximation.

To be able to choose the appropriate algorithm, in this section
various methods will be discussed. Based upon the most likely
classification of the electromagnetic optimisation problems discussed in
the previous chapter, a pre-selection of optimisation algorithms has been
derived. Direct search algorithms are selected. No algorithm requires
derivative information of the objective function.

7.3.1 Non-stochastic direct search algorithms

In non-stochastic direct search algorithms, the search direction (parameter
variation) and step lengths are fixed by a predefined scheme rather than
in an optimal way. The advantage is that only the value of the objective
function has to be available. No derivative information is required, nor
does it need to be constructed from possibly erroneous objective function
values.

7.3.1.1 Strategy of Hooke and Jeeves The strategy of Hooke and Jeeves
(Schwefel '®) is a direct pattern search method. This unconstrained
optimisation method is characterised by a sequence of two kinds of
moves:

» First, an exploratory move in each iteration, consisting of a
sequence of single discrete steps per design variable (co-ordinate
direction)

o This is followed by a pattern move, being an extrapolation
towards an assumed favourable search direction (defined along
the line from the initial design in the iteration and the best design
encountered by the exploratory moves). An exact description of
the extrapolation can be found in Schwefel '

Such an extrapolation does not necessarily lead to an improvement
of the design. It is merely a guess, based on the pattern of the previously
successful moves. This extrapolation determines the name: pattern
search, The success of this last move is tested only after the following
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exploratory move. The parameter variation step length & of the
exploratory moves is decreased in each iteration by the multiplication
with a step length adjustment factor & (0 < @< 1). Due to this sequential
structure, a parallel implementation is impossible. The Hooke and Jeeves
algorithm is characterised by the following properties:

e derivative free, unconstrained optimisation method

¢ dependency of the globa! convergence on the choice of the

starting step length & and step length factor a.

The value of the objective function is required only for detecting the
best exploratory move per iteration. A constrained optimisation task
might be transformed into an unconstrained optimisation. This is not
always possible. If only side constraints are defined in the optimisation
task, such a problem can be transformed in a "quasi-unconstrained"
optimisation problem. This is achieved by setting the objective function
to a very high value in case of violation of the constraints. This infeasible
design does not need to be evaluated. This should not be confused with
the penalty method. In the penalty method, a violation-dependent value
(determined by a function) is applied after the design has been evaluated.
If the violation of the constraints leads to a design that cannot be
evaluated (e.g. invalid geometry), the application of the penalty method is
prohibited.

The Hooke and Jeeves algorithm is favoured compared to
supposedly better algorithms such as Rosenbrock's algorithms
(Schwefel '®®) and the Nelder and Mead Simplex method, due to the
following reasons:

e Nelder and Mead's Simplex method (an unconstrained method as
well) requires the ranking of the evaluated designs in the »-
dimensional simplex following their objective function value.
This ranking decides on the new search direction. The "quasi-
unconstrained" mode described above must fail, as all infeasible
designs are equally valued.

e Rosenbrock's algorithm may include inequality constraints.
However, the approach of the constraint must already be
detected, not always being possible, especially in the case of non-
linear constraints.

7.3.1.2 A theoretical optimisation example To illustrate the
convergence of the selected optimisation methods, and also to allow a
comparison of the different algorithms, a two-dimensional optimisation
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problem is chosen as described in Dappen % and Alotto et al. *. This
particular optimisation problem is defined by:

minimize f(x) = ) (-0.01((x, +0.5)' ~30x’ — 20x,)) (7.5)
-l

subject to the constraints:

-6<x,<6, i=1,2 . (7.6)

This function is chosen as an example as its objective function can
be visualised (Fig. 7.4) including the search paths of the different
algorithms. There are four local minima of approximately equal value.
The global minimum is located at (-4.454,-4.454). Such an objective
function resembles to a large extent typical objective functions found in
engineering applications. The starting point of the visually presented
optimisations are always (0,0). This point is located on the slope towards
the local optimum O3 (Fig. 7.4). Any gradient-based method would
converge to O3. However, the stochastic algorithms are restarted from
different starting points.
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Fig. 7.4. Visualisation of the objective function surface of the optimisation
problem defined in (7.5), (7.6) with the optimal solution at
X1 pes=X2 pes=—4.45377.

Fig. 7.5 illustrates a successful optimisation run. The initial step size
is 6.0 and the step length factor a=0.5. The path connects the best trials
per iteration.

Fig. 7.6 illustrates the problem with the Hooke and Jeeves
algorithm: there is no guarantee for global convergence, as it entirely
depends on a "good" choice of the strategy parameters and the starting
point.
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Fig. 7.5. Path of a successful (global convergent) optimisation using the Hooke
and Jeeves algorithm and convergence of the error (xo(0,0), & = 6.0, o= 0.5).
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Fig. 7.6. Influence of the choice of the initial step length to find the global
optimum. Start at x¢(2,0), 8, = 6, & = 0.5 (local optimum O2), and & = 0.85
(global optimum O1).

7.3.2 Stochastic direct search algorithms

Stochastic search algorithms have steadily gained interest over the past
years due to the increase in the computing power available. Various
algorithms have already been developed and applied to a wide variety of
problems in different fields of science, technology and economics.
Simulated annealing serves mainly as a basis for comparison, while the
two evolution strategy algorithms are valuable optimisers in combination
with finite element function evaluations.

7.3.2.1 Simulated annealing The technical process of annealing solids
inspires simulated annealing algorithms. A slow and controlled cooling of
a heated solid ensures proper solidification (highly ordered crystalline
structure), the state of the minimal internal energy. Rapid cooling causes
defects; the system is not in a state of a thermal equilibrium (Rao . In
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terms of the optimisation theory, a sequence of steps can be formulated,
defining a minimisation process by random changes of the design
variables and a probability acceptance criterion for them. An evaluated
design vector is accepted or rejected following the Metropolis criterion
(Metropolis et al. ™):

e accept design if f(x,,)~- f(x,) <0 and set x,,=x,

e otherwise accept with the probability
P(f(X,,,) _ f(x, )) = g~/ Cr)-S T :

with the scaling factor %, called the Boltzmann constant and 7 the
temperature. Algorithms applying the above probability distribution are
called Boltzmann annealing algorithms. It has been proven {(Geman &
Geman *') that such algorithms are guaranteed to find the giobal optimum
if the reduction of the temperature is taken to be not faster than:
T

Tk - ln k L] (7'7)
with T the temperature at iteration k. Applying such a logarithmic
cooling schedule results in practice in an infinite lasting optimisation
process. Therefore, other cooling schedules are chosen, the majority
being based on experimental studies for selected types of Eroblems, rather
than being mathematically derived (Ingber ', Hajek **). These faster
schedules are sometimes called simulated quenching to express the fact
that they do not satisfy the sufficiency condition (7.7) to converge to the
global minimum. However, they are usually a good trade-off between a
fast convergence and high global convergence probability. The most
common temperature schedule is a simulated quenching algorithm with
the exponential cooling schedule:

T.=¢L O<exgl. (7.8)

sl

However, the optimal choice of the annealing factor ¢ is not obvious
and depends on the problem type. Typical values vary between 0.98 -
0.80, with decreasing probability of finding a global optimum in non-
convex feasible spaces.

The simulated annealing starts at a high initial temperature ;. It
follows the evaluation of a sequence of design vectors, either purely
randomly generated or following a scheme, as for instance the evolution
strategy. This is continued until equilibrium is reached: the average value
of f converges towards a stable value (e.g. by means of an error bound on
the standard deviation of f) as i increases. During such a period of
constant temperature, a step length vector 8 is adjusted periodically. The
best design vector is stored. If equilibrium is reached, the temperature is
lowered and the above sequence is repeated starting from the active
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optimal point. This process is stopped if a sufficiently low temperature is
reached and no further improvement of the objective function can be

expected.

Except for the definition of the scaling factor £ and the scheme to
lower the temperature, also the formulation of the probability to accept or
reject the evaluated designs have undergone investigations in the past few
years in order to accelerate the algorithm by 'maintaining the property of
global convergence. Codes such as Adaptive Simulated Annealing must
be named here (Ingber *”). From the viewpoint here, however, it must be
stated that these improvements of the global convergence are of a
theoretical nature and have a significant effect only on very large
dimensional optimisation problems (100 and more design variables).
Therefore, the simulated quenching methods are preferred here.

The advantages of simulated annealing are:

¢ simple implementation

e slow cooling guarantees high probability of global convergence,

possibility of solving mixed integer, discrete or continuous
problems

» insensitive to stochastic disturbances of the objective function

* simple combination with other direct search algorithms.

The disadvantages are:

e no optimal scheme to determine a sufficiently high 7 without
knowledge of the feasible region

e high number of function evaluations.

The implemented version of the simulated annealing algorithm tries
to tackle one of the disadvantages. By adjusting the step length vector 8
of the parameter variation automatically in such a way that approximately
50% of all designs will be accepted during one temperature step, the first
disadvantage is relaxed. During each temperature step, a number of j
step-length adjustment cycles are performed. Each cycle with constant
step length consists of N-design variations, changing one design
parameter i at a time. A new design is generated by applying a random
change (based on the step length vector 8) to the previously accepted
design vector Xpae.:

x5 =x0 +67(2-2(0,1)-1) (7.9}
with 2(0,1) a uniformly distributed random number of the interval [0,1].
The adjustment of the step length vector per parameter i in (7.9) is based
on the design acceptance ratio » per cycle:
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Prcets (7.10)

n
oycte
with 71gceped; the number of accepted designs based on changes of
variable i and n.yc. the predefined number of cycles. The step length 3, is

adjusted after each cycle to:
5,(1 +a-(50——gﬁ)ifr, >0.6

S, = 5 (7.11)

(0'4—r) ifr, <04
(1+a~'——-‘—)
0.4

with o the step length factor, usually equal to 2.0.

To illustrate the performance of the implemented simulated
annealing algorithm, the optimisation problem (7.5), (7.6) is solved. The
strategy parameters of the SA are chosen as: step length factor a=2.0,
¢=0.85, two iterations with two step length adjustment cycles before
temperature reduction (2*2*N trials per temperature step). The
optimisation is terminated if the difference of the best function value of
the present temperature step to the best overall value is less then 5.0e-4,
and this is true for two successive temperature steps. A typical
optimisation history is shown in Fig. 7.7. The optimisation was repeated
thirty times, and the algorithm always converged to the global minimum
in O1 requiring typically 600-850 function evaluations.

r;:

10! gy

Fig. 7.7. Path of the connected best trials per temperature step. The path
illustrates one strength of the algorithm, as it is able to escape from the local
optimum O2 that is reached first.

A parallel implementation of SA is possible, but not attempted here,
as the implemented SA mainly serves as a comparison tool. Furthermore,
a simple parallelisation of the above implementation of the algorithm is



Numerical optimisation 211

not likely to be efficient, as reported in (Ingber *’). A better efficiency is
reported for clustered algorithms, where an annealing is performed at
different temperatures per computational node.

7.3.2.2 Self-adaptive evolution strategy Evolution strategies imitate in
a simplified way biological mutation and selection. Evolution strategies
slowly started to become popular with the work of Rechenberg ** and
Schwefel ', Especially during the past decade, accelerated by the rapid
increase of the available computer power, a vast number of developments
have been reported (Bick et al. °). In contrast to genetic algorithms,
evolution strategies are directly based on real valued vectors when
dealing with continuous parameter optimisation problems. While
Rechenberg ** developed a theory for the simple two member (single
recombinant) evolution scheme, the theoretic framework of multimember
multirecombinant (also called multiparent) evolution strategies, including
self-adaptation, is still weak. Bick, Hammel and Schwefel comment on
this in Bick et al, *; "We know that they work, but we do not know why".
However, first attempts have been made (Beyer i, l2). Even though in
these publications the superior progress rate of multirecombinant
evolution strategies is highlighted, the single recombinant schemes are
still present in engineering research. This is mainly due to their simple
implementation, but they are certainly no longer justified when seeking a
high performance algorithm.

The implemented evolution strategy is basically the
multirecombinant scheme developed in (Schwefel '), slightly adapted in
(Hameyer *). An evolution scheme is based on a population of designs of
size A. The members of this population are created by recombination and

- - “)
mutation from a set of the u parent design vectors x.”. These parent

design vectors are selected following their fitness from the A offsprings of
the previous iteration. Instead of randomly selecting only one of these
parents to generate one offspring, multirecombinant schemes are based
on the contribution of p parent vectors. The factor p is therefore termed
the sexuality. Qur experiments and recent publications (Beyer ') have
indicated that a sexuality p= u promises the highest progress rate of the
algorithm. Mutation is independently applied to each design vector
element as:

xg, =x,] +6s” with i=1(1)N (7.12)
with k the generation index, p the parent index, m denoting a population

member index of the interval [1,4] and s{*’the random search direction.

The parental designs can be selected either from the present population
only (p/4,A-"comma"-strategy) or from the population and the previous
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parent set {ofirtA-"plus"-strategy). While in the comma strategies,
individual parameter sets are mortal (existing only for one generation),
they may survive for the whole optimisation in a plus strategy. Plus
strategies are more likely to get trapped in local optima. On the other
hand, they feature a higher progress rate (Beyer '%). Using an intermediate
recombination scheme, the step length ) for each population member

is constructed on the basis of p step lengths of the x parents. As indicated
above, it is advisable to choose p =

o - 4550 013
with z(1,4) a uniform distributed random integer from the interval [1,4]
being newly generated for each .

Furthermore, instead of constructing an individual step length for
each design parameter, only one step length is used for the whole set.
This requires a normalisation of the parameter. Tests have shown that this
single step length speeds up the algorithm, provided there are no strong
dependencies among the object parameters. It must be noted, that (7.13)
actually defines this evolution scheme to be self-adaptive of oSA4-type
(oSA stands for o-self adaptive, with o the mutation strength) as defined
in Beyer'Z, In self adaptive schemes, the mutation strength o as a strategy
parameter is individually coupled with each set of object parameters.
Thus the individual step length is stored with the object parameters. To
evolve through the course of the optimisation, an additional learning
parameter is specified. It determines how quickly and accurately the self
adaptation is performed. Beyer'? reports this self adaptive scheme to
achieve optimal convergence velocity for (1,A)-strategies if the mutation
strength is mutated following either a lognormal distribution or a
symmetrical two-point distribution. Here, the intermediate step length
(mutation strength) is adjusted following a two-point distribution:

k
st _ | Smja o w(0l] 5172
™88 e T w(o,1] 2172

with %(0,1] sampling from the random uniform (0,1] distribution and «
the step length adjustment factor. The optimal adjustment factor « is
problem dependent, usually chosen between 1 and 1.7 with 1.2-1.3 being
a good choice for problematic multiminima problems. The adjustment by
(7.14) helps in exploring the feasible space in two distinct directions:
locally by narrowing the search space for approximately 50% of the
offsprings and globally by widening it for the remaining sets. Hameyer *°
supports the latter by enforcing the final step length to follow the

(7.14)
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Maxwell distribution. This makes larger step lengths more likely than
smaller ones, and should avoid trapping in local optima.

As already indicated above, the choice of the strategy parameters is
problem dependent. Based on a large number of tests, involving
numerous technical optimisation problems, a possible choice of the
strategy parameters is collected in Fig. 7.8. It should be clear, however,
that these are empirical data and not necessarily the optimal choice for a
particular optimisation problem, nor do they indicate the bounding lines
any limits. The choice of the number of parents depending on the
populaltlion size for optimal progress is supported by the data given in
Beyer .

| )
N,
N
s X
3 ‘ — et~ oo - higher glabial
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Fig. 7.8. Typical choice of the strategy parameters for the multirecombinant
evolution strategy (population size A related to the dimensionality of the
optimisation problem ¥, and number of parents related to population size). These
empirical data are valid only for typical technical problems, featuring locally
smooth, non-convex feasible spaces.

Selecting the strategy parameter according to Fig. 7.8 must be
accompanied by an appropriate initial step length. The initial step length
should be chosen to be larger than the Euclidean distance of the object
parameter space. If the design parameters are normalised to the interval

[0,1), this isv/2 . If one assumes a well-conditioned optimisation problem,
where small changes to the object parameters cause small changes in the
value of the objective function, then the change of the step length can be
taken as a stopping criterion,

To illustrate the global convergence of the self-adaptive evolution
scheme, a sequence of optimisations with different strategies (30 runs
each) are performed on the optimisation problem (7.5),(7.6). While the
(2/2,8)-strategy globally converges in only 37% of the tests, a (4/4,15)-
strategy does so in 95% of the runs. For this theoretical model, the step
length adjustment factor c is 1.6.
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Fig. 7.9. Convergence history (best offspring per iteration) for a successful run
with (2/2+8)-strategy.
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Fig. 7.10. Convergence history of a successful but slow test with a (2/2+8)
strategy. The algorithm is trapped in a local optimum (O4) for a considerable
number of iterations.
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Fig. 7.11. Convergence history of a successful test with a (2/2,8)-strategy. This
strategy globally converges in only 37% of the test runs.
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Fig. 7.12. Convergence history of a test with a (4/4,15)-strategy. This strategy
globally converged in 97% of the test runs.

The evolution strategies are well suited for parallel implementation,
as all individuals in the population can be constructed and evaluated
independently. One important property of the evolution strategy must be
pointed out, as it forms the base of a sequencing of these algorithms with
other algorithms: the evolution strategies converge very fast during the
initial steps of an optimisation but they are poor in fine tuning the
parameter set. Such an algorithm is well suited for finding the most
interesting region of the feasible space at first, being followed by a faster
local algorithm to fine-tune the parameter set.

7.3.2.3 Differential evolution Differential evolution (DE) (Storn &
Price %" ') is a rather recent approach for the treatment of real-valued
multiobjective optimisation problems. As is typical for stochastic search
algorithms, differential evolution does not require any prior knowledge of
the variable space, nor of the derivatives of the objective functions
towards the design variables. The algorithm is very simple, requiring only
two control parameters, and is inherently parallel. Differential evolution
is a self-adaptive evolution scheme clearly deviating from the oSA
scheme outlined in the previous section,

Consider a N-dimensional vector of design variables x:

p S A TR S (7.15)

In the initial step, a population of size A of randomly chosen designs
x; is constructed such that the initial population covers the entire
parameter space uniformly. Practically, this could be achieved by
defining an initial step length of design variations &,, being applied
randomly to a given start design Xy:

x$) =x, =8, +2-8,-5,0,0), (7.16)
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with m=1(1)A, i=1(1)N and the randomly chosen 5, € [o,l]. In the process

of the optimisation, DE generates new parameter vectors by adding the
weighted difference between a defined number of randomly selected
members of the previous population to another member. In its basic
strategy, this is the difference of two vectors added to a third:

Ve =x e () - x3), (7.17)
for m = 1(1)A with k the generation index, r,r,r, e[l,,l], randomly
chosen and mutually different and @€ IR,@>0. The difference term
(x* =x%)is obviously similar to the step length & in the previously
described oSA scheme, as well as o finds its equivalence as the
adjustment (or learning) factor. The difference is that this step length is
not taken from a fitness-selected set of individuals, but rather from a
randomly selected individual of the previous population. No explicit step
length information has to be maintained. Also, the basis vector x!; does

not need to be fitness selected. To increase diversity in the population,
crossover is introduced, leading to a new parameter vector of the form:

S v for i=(n) ,(n+1),,..(n+L-1), | (7.18)
- x for all other ie[l,N]

The brackets ( )" denote the modulo function with modulus &. The

index » is a randomly chosen integer from the interval [1,¥]. L defines
the number of parameters that are to be exchanged and is taken from the
interval [I,N]. L is chosen in such a way that the probability

P(L=v)=(p )",v>0, with the crossover probability p e[0,1]. In
pseudo-code, the determination of L can be expressed as:

L=0
do
L=L+1
while ((rand(0,1)<p,) and (L<N))

This recombination scheme is different from the one defined by
(7.13) and (7.14). The new parameter vector x“* is checked for

violation of any constraints. If it violates one of the constraints, this
parameter vector is rejected and the construction of a new vector is
repeated. The selection process now has similarity to a tournament
selection process. If this resulting design vector yields a better value of
the objective function than its predecessor x{*?, the new design replaces

the old one in the population. If not, the old vector is retained. This
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selection scheme is the most distinctive difference from the oSA-
evolution strategy introduced in the previous section. Here, fitness is
tested against the direct predecessor, whereas the cSA-strategy constructs
a fitness selected set of parents from the whole population. Several
deviations of this algorithm can be defined, depending on the choice of
the vector to be perturbed, the number and choice of parameter vectors
considered for the computation of the difference vector and the crossover
method (Storn & Price '®). A good choice for non-critical technical
problems is a strategy that increases the greediness of the algorithm by
using the best parameter vector from the previous population:

vl =xf) o -xB), (7.19)
or applying mutation to the direct predecessor:
v = x®) pog (xf®) —xB)y - (B - xB)). (7.20)

The construction of the new population member u,g.; involves in
any case the crossover scheme as outlined in (7.18). The stop criterion for
the cSA scheme is the variation of the average step length & of the
selected parents. Such an average step length has to be constructed
explicitly for differential evolution, to serve as a stopping criterion. The
L,-norm of the difference vector between each population member and its
predecessor is taken.

The experiments conducted in the scope of this book have indicated
that the (DE/best/1)-strategy defined in (7.19) is to be favoured for most
technical problems. The two remaining strategy parameters can be chosen
as a.= 0.5 and y= 0.9. The influence of the population size has been
found to be less critical than in SA schemes. A minimum of A > 15
should be chosen always if N>2, However, problems with up to 25
parameters have been successfully solved with population sizes between
30 and 40. Stomn & Price '® advises one to choose A = 10*N. Here, the
authors have found that such a large population is not necessary for the
problems classified in section 7.1 . Storn & Price '® use the algorithm to
solve artificial optimisation test problems,

DE has been applied to the optimisation test problem (7.5), (7.6) as
well. The results are presented in Fig. 7.13. The strategy using A=10 is
successful in only 68% of the test runs, while tests with A=20 succeeded
in 94% of the cases within 300 trials. Differential evolution is well suited
for parallel implementation,

Both evolution strategies can be used in cascade coupled with the
Hooke and Jeeves algorithm. The optimisation is started using an
evolution strategy, until a defined accuracy bound or step size variation is
reached. Then the Hooke and Jeeves algorithm is invoked for the fine-
tuning of the parameter set, assuming that the evolution strategy had
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approached the global optimum, allowing a local optimiser to take over.
This reduces the overall number of function calls, but might not be
permitted in the case of a strongly constrained optimisation problem.

1
20 40 680 BO 100 120 140
numbsr of function evaluatonny

Fig. 7.13. Convergence history of a successful test using the (DE/best/1)-strategy
with 2=10, a=0.5 and p,=0.9.

7.3.3 Indirect methods

While in direct search methods the optimisation algorithm samples the
objective function directly, in indirect methods the optimisation algorithm
is applied to an approximation of the real N-dimensional feasible surface.
A trial on a fitted surface is computationally comparatively cheap if it
replaces, e.g. a finite element analysis.

7.3.3.1 Response surface methodology and design of exPeriments The
response surface methodology (RSM) (Box & Draper ’) is such an
indirect method. The classical RSM is based on first or second order
polynomials. The general form of a second order response surface is:

N N-L N N

SX)=b,+Ybx+Y, Y bxx +) bx (7.21)

=] =l fuisl tal
with &y, b;, b; and b, the unknown coefficients that can be found using the
method of least squares and N the number of variables (in RSM also
called factors). The by are called the interaction coefficients, whereas the
b; and b, are referred to as the coefficients corresponding to the main
effects. The immediate advantage of the computation of the coefficients
is the information they provide about the significance of individual
interactions and main effects. They provide a tool for reducing the
dimensionality of the problem by excluding non-significant design
parameters from the design optimisation task. This is usually performed
using first-order response surfaces. To fit any second-order surface, the
number of trials to be computed must be at least equal to the number of
unknown coefficients.
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There exists a theory to define the sample points to consider. This
can be found under the name design of experiments (Box & Draper '/,
Montgomery ¥, Clarke & Kempson *). Experimental designs should
ensure an efficient sampling of the region of interest and provide
information on the accuracy of the response in the region. To find an
accurate second-order fitting surface, three level designs are required
(three values per parameter range). This leads to 3N-samples to be taken
for one surface. The research on statistical methods advises a number of
samples that are suitable for response surface fitting and require
considerably fewer function evaluations than the full 3-level factorials
(Box & Draper ", Clarke & Kempson **). Furthermore, they give equal
precision for the responses at equal distance from the centre of the factor
space (rotatability property). Such recommended designs are:

e Central Composite Design (CCD) (Box & Draper ")

¢ Small Composite Design (SCD, special case of CCD) (Draper **)

e Box-Behnken Design (BBD) (Box & Draper ).

Taking the axis experiments a distance «, from the centre of the region
ensures rotatability of the design. But o, is determined for CCD as:

1
o, =(n,)‘ (7.22)
with 7, the number of runs for the 2"-factorial, leading for the N=2 to

o, =2 . If the parameters are normalised and bounded in the interval [-

1,1], this would be outside the feasible region of the optimisation task. In
this case, one takes the outlying axis runs to fit within the feasible space
(Fig. 7.14).
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Fig. 7.14. Central composite design on normalised parameter space of dimension
N=2 consisting of four factorial experiments or runs (D,-D,), four axis runs (Ds-
D;) and one centre run (D).
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A CCD is a five-level design, as it requires the coding of the
parameter levels -a, -1, 0, 1 and a,. It should be noticed that a CCD for
N=2 (with one centre run) appears to be simply a rotation of the full 3"
factorial design (Fig. 7.15a). However, going to higher dimensions, the
advantage of 2"+2N+n. over 3" experiments becomes obvious.

In the case of the objective function defined by eqns.(7.5) and (7.6),
Fig. 7.15 and Fig. 7.16 represent the second order response surface
obtained by fitting CCD and full 3"-factorial designs. The CCD is
constructed by taking the 2" factorial designs (also called runs), 2N axial
or star runs and ». centre runs (Fig. 7.14).

The Box-Behnken designs are formed by combining two-level
factorials with incomplete block designs (Box Draper '"). In the two-
dimensional case, this would reduce to a two-level factorial with one
added centre point, requiring only 5 runs. However, 6 coefficients have to
be determined, leaving the least squares problem underdefined. Box-
Behnken designs are very effective from 3 factors upwards.
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Fig. 7.15. Second order response surface using a central composite design
{CCD). Part a) shows a contour plot of the response surface and indicates the
positions at which samples are taken, while b) visualises the agreement between
response surface and original curve.

As the response surface is constructed by a second order
polynomial, an optimisation algorithm can be derived by applying a four-
step scheme:

step 1: Construct a second order response surface using designed
experiments.

step 2: Use a gradient based algorithm to find the minimum of the
response surface.

step 3: Contract the active design space by a defined factor around the
new optimum.

step 4: Stop if stopping criterion fulfilled or go back to step 1.
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Fig. 7.16. Second order response surface based on a full 3-level factorial. Part a)
shows a contour plot of the response surface and indicates the positions at which
samples are taken, while b) visualises the agreement between response surface
and original curve.

Examination of Fig. 7.15 and Fig. 7.16 reveals the problem of the
response surface methodology: the actual fit of the response surface can
be very poor. In our case, the minima of both response surfaces are closer
to the global one than the initial centre point. However, this cannot be
guaranteed, if multiple minima reside in different sized regions of the
feasible domain. Brandiski '** > has examined the usefulness of different
approaches for multiobjective optimisation in the design of small
permanent magnet machines using FE-analysis, such as:

¢ Select one main objective and reformulate the other objectives as
constraints,

» Apply an Euclidean distance function to minimise the distance of
the global optimum to all single objective optima (this is
comparable to the idea of minimising the sum of the single
normalised objectives).

o Apply a desirability function to each single objective
(normalising the response to values of the interval [0,1]) and
apply a geometric mean to achieve a single scalar value.

Brandiski concludes that both last-mentioned methods are useful,
with advantages of the approach using desirability functions. The concept
of desirability functions shows similarities to applying the fuzzy set
theory to formulate a multiobjective function. These approaches do not
solve the inherent weakness of the response surface methodology
regarding multiminima functions.

As a conclusion, the response surface methodology using first or
second order polynomials has its advantages if the objective function
surface features a low curvature, probably having a single optimum only.
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Its success in finding the global optimum depends on the choice of the
limits of the search region and its contraction scheme. It is interesting,
however, to examine the main effects of the variables and their
interactions, which can be used to reduce the dimension of the
optimisation problem by excluding less significant design variables or to
detect unwanted dependencies.

7332 General response surface methodology The inherent
problem of the response surface methodology to provide "good" fitting
response surfaces has led to the introduction of the general response
surface methodology (GRSM) capable of ﬁndmg the global optimum of a
multimodal design space (Alotto et al, **). The basic idea is the same as
in the RSM: find a response surface function and apply an optimisation
algorithm to find the optimum of this function. The new feature of the
GRSM is the usage of multiquadrics (a special form of radial basis
functions) to achieve a response surface including multiple minima. Due
to the possibility of including multiple minima, gradient based
optimisation algorithms are not permitted. Alotto proposes the use of
simulated annealing instead.

GRSM uses approximations of the objective function at any point x,
of the form:

fx)= Jz::c,h(ﬂx, ~x)|) (7.24)

with ¢; the approximation coefficients, M the number of experiments and
a possible radial basis function #(||x-x|) chosen to be:

Hjx—x,])=Jlx—x [ +5. (7.25)

(In geometric terms ||x-x,|| denotes the distance (radius) between the two
points in the N-dimensional space defined by the vectors x and x;. This is
the origin of the term radial basis functions.) The shift factor s is a
parameter defining the curvature of the approximated N-dimensional
surface Alotto presents a statistical method (Bootstrapping (Alotto et
al.*) to define s in a near optimal way. However, expenments have
shown that choosing s smaller than the average spacing of the sample
points is sufficient for most applications.

If one substitutes the interpolation condition fx;)=y; in (7.24), the
matrix equation for the unique coefficients ¢; is obtained:

He=y, (7.26)
with the coefficients of the matrix Hy=h(||x;-x|[}. The matrix H is a full
matrix with all diagonal elements zero. As long as the number of sample
points is relatively small (up to a few hundred points) and singularities
due to duplicate points are avoided, this system can be solved by any
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pivotation method. The approximation function fits exactly all sample
points. This is in contrast to the response surface methodology based on
second order polygons, in which the least square difference is minimised.
However, the GRSM does not give any information on the main and
interaction effects as does the RSM, due to the fact that the coefficients c;
are not related any more to a particular design parameter.

The attraction of the classical RSM method is based mainly on the
statistical methods that provide interpretable fitted first or second order
polynomials. The experimental design developed for this purpose provide
the tool to construct these curve fittings efficiently for a well defined
polynomial order. The curve fitting based on radial basis functions does
not have such a well-defined global polynomial order. Alotto et al.*
proposes to combine the multiquadrics approximation with the theory of
design of experiments with the goal of reducing function calls in
comparison to the RSM. This can be successful only if higher level
designs are used, resulting in a larger number of experiments. The same
number of experiments as designed for the RSM will deliver not much
more information with the GRSM (Fig. 7.17).

The advantage of the multiquadrics approximation (on a
multimimina objective function) arises with higher factorial designs (Fig.
7.18) or by accumulating the sample points in successive zooming steps.
More detail of the original curve is present in the approximation, however
at the expense of significantly more sample points. Such a resolution
cannot be achieved by a global second order polynomial approximation.

Fig. 7.17. Multiquadrics response surface based on a full 3"-factorial; a) shows a
contour plot of the response surface and indicates the positions where samples
are taken, while b) visualises the agreement between response surface and
original curve. The result is similar to Fig. 7.16.

Comparing RSM and GRSM leads to the conclusion that the
advantage of GRSM is the more accurate approximation that can be
achieved when accumulating the sample information over the course of
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the optimisation or by higher level factorial designs. Additionally, the
approximated surface passes through all sample points taken. The
accuracy of the fit depends on the number of sample points if no prior
information about the curvature of the design space is available. A global
optimum might still be missed if the sample grid is chosen unfavourably
or the successive zooming steps narrow the search region too fast.
Furthermore, the statistical methods introduced by the design of
experiments method, to evaluate main and interaction effects, are mostly
not applicable to radial basis functions.

Fig. 7.18. Multiquadric approximation based on a full 5-factorial (25 samples);
a) shows a contour plot of the response surface and indicates the positions at
which samples are taken, while b) visualises the agreement between response
surface and original curve.

7.34 Adaptive coupling of evolution strategy and multiquadrics
approximation

Arriving at this point, the question of a possible combination of the
interesting features of the presented methods arises. One of the most
significant features of the evolution strategies is their ability to converge
fast to the region of interest. The fine tuning of the design, on the other
hand, requires a high number of evaluations of the objective function.
The presented approximation method based on radial basis functions, on
the other hand, is able to approximate multiminima functions with a high
accuracy. The accuracy of the fit is not determined by a predefined
spacing of the sample grid as in RSM, but rather by sampling "in the right
place".

Here, a new approach is introduced, that could be characterised as
an adaptive coupling of evolution strategy and multiquadrics
approximation. The idea is to combine the above-mentioned features of
both methods to reduce the overall optimisation time when using
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computationally expensive function calls (e.g. FEM analysis). The basic
steps of this method are:

stepl: Start an evolution strategy optimisation using the objective
JSunction (direct search iteration).

step 2: Construct a multiquadrics approximation f'(x) after each
iteration, including only points within a defined radius from the
active optimum. This radius is a function of the active step length,
ensuring an automatic contraction of the active approximation
space.

step 3: Compute the next evolutionary iteration using the objective
Sfunction, but determine the predicted value from the
approximation f'(x) as well.

step 4: Record each point within a maximal radius k-8 from the active
optimum and construct an updated approximation f(x). If more
than a defined ratio of predicted experiments are accepted
Junction during an iteration, go to step 5, otherwise return to
step 3.

step 5: Start a new evolutionary iteration, but now using the
approximation f'(x) only (indirect search iteration).

step 6: Depending on the acceptance ratio determined in step 4, continue
an adaptive number of evolutionary iterations using the
approximation f'(x) only.

step 7: Stop if the stopping criterion is fulfilled; if not return to step 3 and
start sampling on the real objective function again.

This algorithm can be applied to any basic evolution strategy. Here,
it has been employed to the differential evolution strategy (DE). There
are three levels of adaptivity determining the algorithm:

1. The contraction or zooming of the approximated region is adaptive to
the progress of the optimisation by considering a search space with a
maximum radius of k5. The factor k is empirically chosen as:

k=k(a)-10.0 (7.27)
with a the step length factor of the evolution strategy. For the DE-
strategy, kj(o)=0/0.5, ensuring that the approximation region is wide
enough for any progress during the indirect iterations (Fig. 7.21). If
the step length is rapidly decreased (a=0.5), a smaller approximation
region is permitted. If o is larger, the probability that the evolution
strategy reaches the boundary of the approximation region in case of
bad fitting, is higher. Therefore the chosen region must be large
enough. The reason for this special measure is the bad approximation
near the boundary of the active region. The points are determined by
the evolution strategy instead of a regular grid as in the RSM or
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GRSM. This inherits a higher accuracy of the approximation towards
the centre of the search space when using the evolution strategy. At
the same moment, the shift factor s for the multiquadrics
approximation eqn.(7.24) is defined by the average step length & in the
last iteration,

2. The acceptance of the approximation is determined based on the
variance of the objective function value of the iteration underlying the
active approximation. Accepting predicted experiments with an error
less than 10% of the variance has given good results. The error is
computed by:

_[f'x)-f(x)
sy g

with the trial being accepted based on the variance of the objective
function during the last iteration:

8(x,) <o.1-ﬁ; [f(x.)-%,f_‘jf(x,)]z : (729)

3. The number of indirect search iterations only depends on the
acceptance ratio achieved with the active approximation. A higher
acceptance ratio allows a larger number of iterations on f(x). Tests
indicate that a non-linear dependency of acceptance ratio and number
of indirect search iterations nj, is required to ensure a high accuracy of

the optimisation throughout the approximation period:
1

, (7.28)

L
n =|-2 10+1 (7.30)
0.5

*

with n, the number of accepted trials per iteration and A the population
S1Ze.

Due to the choice of the DE-strategy, particular attention has to be
paid to avoid singularity of the matrix H to solve the approximation
equation (7.26). Such singularity is caused by duplicate points in the pool
of recorded experiments. In DE, this is possible if the crossover
probability is high. In this case, an identical replicate of a previous
sample is generated for the new population. Such points are not taken into
the sample pool to construct the approximation. The contraction of the
approximation region is necessary primarily to reduce the number of
unknowns in the matrix equation (7.26).

A further problem that is inherent to all evolution strategies appears
when retumning from an approximation step: the selection and mutation
generates new population members entirely based on members
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originating from an approximated function. Their approximated function
value is erroneous, probably even lower then the global minimum of the
objective function value. The greedy criteria inherent to all evolutionary
algorithms could cause these approximated results to survive. To prevent
this wrong development, all population members of the last approximated
iterations must be mortal, and thus not allowed to survive this first
iteration using the objective function evaluation. This causes the new
method to require slightly more steps than the classical DE alone would
need to converge to the optimum. However, a large percentage of these
steps is taken on the approximated function.

The performance of the method is demonstrated on the test example
in eqns.(7.5), (7.6). Using the same DE-strategy settings as in section
7.3.2.3 (Fig. 7.13), only 60 objective function evaluations are required,
whereas 80 function calls are performed on the approximated function. In
Fig. 7.19, the convergence history of the error is shown.

direct search indirect search direct indirect

. =
Q 20 40 60 80 100 120 140
number of function evaluations

Fig. 7.19. Convergence of the error using the new coupled method based on a
(6/10,0.5,0.9)-DE-strategy.

In Fig. 7.20 to Fig. 7.21 the approximation surfaces during the
progress of the optimisation are shown. Only 5 multiquadric
approximations are calculated. After three iterations (2,3 and 4) the
approximation is accurate enough for accepting 80% of the predicted
function values. Four iterations using this approximation follow. During
this period, the approximations are naturally not updated. These are
followed by two direct search iterations, 10 and 11. After these two steps,
the updated approximation is accurate enough to return to the
approximation again. It must be noted that the probability of finding the
global optimum is entirely dependent on the basic strategy parameters of
the evolution strategy. However, choosing the population size larger than
when using the classical DE-strategy offers the advantage of finding a
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better approximation with less direct, and computationally expensive,
iterations.

Moo N oa
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Fig. 7.20. Updated approximations during the initial direct search iteration
a) after 2 and b) after 4 iterations of differential evolution. The approximations
span approximately 10 to 20 times this active search region.

Fig. 7.21. Updated approximations during the final two direct search iterations,
a) after 10, and b) after 11 iterations of the differential evolution algorithm.

The reason for choosing the approximated region considerably
larger then the active search region is visible in Fig. 7.21. The
approximation accuracy outside the active region is poor. If the evolution
strategy reached this region during the indirect sampling, the optimisation
might fail. Taking the approximation region wider than the active
sampling region of the evolution strategy, as proposed in eq.(7.27), is
essential and effectively prevents failure of the method.

A remarkable feature of this proposed algorithm is that the
efficiency depends on the curvature of the objective function. Tests with
simple second-order surfaces have shown reductions of objective
function calls of up to 80%.

It must be mentioned at this point that this algorithm performs well
for low dimensional optimisation problems (tested up to 5 on the above
objective function and other test functions), Further studies are required
to improve and extend the algorithm, especially the adaptation criteria, to
provide equal performance for higher dimensional multimodal problems.
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There are various methods known to solve a system of linear equations.
In this section, we will give an overview of the most important methods
suitable to solve equation systems obtained from finite element models of
electromagnetic field problems with its special properties. We will
consider a system of the form

Ax=b . @.n

The matrix A is derived from a linear elliptic partial differential
equation (PDE) by using a finite difference or finite element
discretisation. Most of the numerical methods that will be discussed in
this section are applicable to a wide range of problems. Here, we will
focus on the standard example of Poisson’s equation V'x=-q.

Discretised by the finite element method, matrix A will usually be
extremely sparse. For the present problem, the matrix is also
¢ symmetric
e positive definite
* structured.
These are properties that are not always satisfied for more general
problems. The solution of linear systems derived from a PDE can be
approached from two different points of view:
e algebraic:
One forgets about the nature of the original problem and deals
with (8.1) as an abstract matrix equation. Algebraic methods are
usually very robust. They tend to be sub-optimal, however, but
easy to apply, and widely available in standard software
packages.
e geometric:
One tries to employ all available knowledge about the mesh and
the nature of the PDE and boundary conditions. The system is
seen as a collection of discrete finite element equations, whose
molecules (stencils) reflect the connectivity of the unknowns and
their relative strengths. Geometric methods are more specialised
towards one particular class of problems. They are usually of
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more limited applicability, often hard to implement but possibly
extremely effective.

To study the theoretical aspects of the different equation solver, refer to
the literature (Briggs », George & Liu *, Heath ¥, Saad *"). In this
chapter it is intended to give a rough overview of possible methods and
with the properties of the particular algorithms discussed here, the reader
is enabled to choose an appropriate equation solver for his class of
problem.

8.1 Methods

The various methods to solve a linear system of equations are
traditionally distinguished by direct and iterative methods.

8.1.1 Direct methods

o Gaussian elimination (LU/Cholesky factorisation)
= dense factorisation
= band factorisation
= sparse factorisation

¢ Fast direct solvers (fast Poisson solvers)
= fast Fourier transform techniques (FFT)
= cyclic-reduction techniques (CR, FACR)

Direct methods can be characterised as follows:

e They produce a solution to the system of equations in a finite
number of operations.

e They are mainly of algebraic nature, and widely applicable under
extremely weak conditions (e.g. non-singularity). Some direct
methods are geometric, e.g. most fast direct solvers. Certain
methods use the geometric information reflected in the matrix
adjacency graph, e.g., to determine an optimal renumbering of
the unknowns.

e The accuracy of the solution depends on the conditioning of the
problem, the numerical stability of the solver and the precision of
the computer arithmetic. The accuracy can sometimes be
improved by an iterative refinement technique.

e They usually require large amounts of memory, and may be very
time-consuming,.

¢ They do not require an initial estimate for the solution. On the
other hand, they cannot take advantage of pgood initial
approximations, which are sometimes available.
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¢ The user has little control over the accuracy of the solution. In
some cases, a low accuracy solution suffices. This is especially
the case for PDE problems, where the discretisation error is often
in the range of 107 (or even worse). Direct methods cannot take
advantage of this fact.

8.1.2 Iterative methods
e Stationary (or linear) methods with the iterations:
x* =Gx* + ¢
= The classical methods:
+ Richardson

« Jacobi
e« Gauss-Seidel
« SOR/SSOR

= PDE-specialised methods:
» Altemnating Direction methods (ADI, LOD)
» Multigrid (geometric, algebraic, ... )
+ Domain decomposition (Schwarz, Schur, ...)

=> Specialised preconditioners:
+ Incomplete factorisation (ILU, IC, ILQ,...)
» Approximate inverse preconditioners
» Polynomial preconditioners

e Non-stationary (‘acceleration’) methods with the iterations:
x(hl) = E(x(l’),x('-l)’ .. .)

= Chebyshev iteration/acceleration
= Krylov subspace projection methods
« Ritz-Galerkin methods: CG, FOM, ...
«  Petrov-Galerkin methods: CGN
= Minimum residual methods; GMRES, MINRES,
ORTHODIR, ...
= A/AT methods: BCG, QMR, ...
« Hybrid methods: CGS, BICGSTAB, TFQMR,
FGMRES, ...

Iterative methods have the following qualities and drawbacks:

e Usually, they require little memory: storage for the nonzero
matrix elements, the right-hand side, the solution, and perhaps a
few additional vectors for temporary storage. In the geometric
approach no matrix has to be stored explicitly. The storage for
the matrix elements can be integrated into the mesh data
structure.
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8.2

Linear system equation solvers

Often such methods can be implemented as soon as a procedure
is available that computes the product of the matrix with an
arbitrary vector. Hence, such methods can be applied in cases
where one does not want to construct the matrix. This occurs, for
example, when solving non-linear problems with the Newton
procedure (construction of Jacobian matrix can be avoided).
When optimally tuned, they usually require much less work than
direct methods. For good performance they may require accurate
estimation of various problem-dependent parameters, such as the
extreme-eigenvalues of the discretisation matrix. They may lose
much of their potential performance, or even stop to converge, if
the parameters are not chosen carefully.

They are less robust than direct methods. They often require
different conditions on the matrix to be satisfied (e.g., symmetry,
positive definiteness,...).

A small perturbation to the system matrix or to its structure may
have a fatal effect on the convergence. In certain cases, one may
want to resort to two-level iterative schemes, with the classical
iteration used within a block-level iteration.

Computational costs

Table 8.1 summarises the computational cost of solving an elliptic
boundary value problem on a mesh of size kxk (2D) or kxkxk (3D).
The formulas are valid for the Poisson equation on the unit square,
discretised with second order central differences. For more complicated
PDEs, domains, boundary conditions or discretisation schemes some of
the methods may not be viable options (e.g. FFT based techniques).

The complexity of a method is often written as a function of n,

where n is the order of the coefficient matrix. Table 8.2 states the
exponents of n in the computational cost of solving a 2D or 3D elllptnc
problem. Note that the cost of a dense direct solver increases as n’, while
multigrid solves a problem at a cost proportional to .
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Table 8.1. Computational complexity of direct and iterative methods for the
solution of the problem on a rectangular mesh with & mesh-points in every

direction (Heath **, p.344).

method 2D 3D
dense Cholesky K K
Jacobi K logk K logk
Gauss-Seidel K log k 4 lo7g k
band Cholesky ¥ k
optimal SOR K logk K l%g k
sparse Cholesky K k
conjugate gradient ¥ K
optimal SSOR P log k £ log k
preconditioned CG K K
optimal ADI Klog’k Klog’ k
cyclic reduction K log k Klogk
FFT K log k K log k
multigrid V-cycle K log k K logk
FACR ¥ log log k ¥ log log k
full multigrid ¥ K

Table 8.2. Exponent of n {total number of mesh-points) in the computational
complexity of direct and iterative methods a?splied to the model problem Poisson

equation (Heath ™, p.345).

method 2D 3D
dense Cholesky 3 3
band Cholesky 2 2.33
sparse Cholesky 1.5 2
conjugate gradient 1.5 2
preconditioned CG 1.25 1.17
full multigrid 1 1







9 Modelling of electrostatic and magnetic devices

The modelling of a technical device is a process of neglecting and
simplifying in order to describe the physical device in a mathematical
model. The type and quantity of the simplifications influences the
accuracy of the solution. In most cases, a choice has to be made between
the required accuracy and the numerical size of the model.

Fig. 9.1. Assumptions.

To define an appropriate field problem, the mode! of a real
electromagnetic device, simplifications have to be made on three levels
(Fig. 9.1). The recommended predictions concerning the behaviour of the
real device must be translated into a model representation. Thus,
assumptions have to be made conceming different issues.

The time dependence of the problem can be of the type:

e sfatic

e stationary changing

o periodically changing, or may be
® transient.

The problem can be considered geometrically as a
e 2D problem that is constant in the z-direction, or as an
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¢ axially symmetrical problem, only consisting of a tangential
component, or as an entire
e 3D model.

In the mathematical formulations, simplifications are already
embedded. The most important effects of the device must be present in
the particular potential formulation for example such as:
non-linearities,
hysteresis effects
e couplings to other field types
¢ couplings of external circuits, ...

Decisions have to be taken to define the model and thus to describe
the real device with a maximum of accuracy.

9.1 Modelling with respect to the time

To choose the appropriate solver module of a numerical field
computation software package the dependence with respect to the time of
the field problem has to be considered. Table 9.1 represents a systematic
for choosing an appropriate solver. Time-harmonic or periodic problems
can be handled with a transient solver as well. The disadvantage of this
approach is the huge computational cost.

Particular attention must be paid to the analysis of electromagnetic
devices such as electrical machines. By studying different modes of
operation, different problem types have to be defined.

In the following sections the model properties of the various field
types are discussed.

Table 9.1. Selection of appropriate solver modules.

electromagnetic fields

time independent time dependent
b =0 2 =0
ot ot
no eddy currents considers eddy currents
static quasi static periodic transient
(quasi stationary)
static solver time-harmonic transient solver

solver
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9.1.1 Static problems
A static field is a field with constant boundary conditions and is excited
by DC currents or voltages. If a DC voltage is applied, the DC current
depends on the voltage only by the DC resistance. No induced effects
such as eddy currents or induced voltages are present in the model. In a
static model, the flux is constant in time and thus the reluctivities are
constant as well. '

Regarding the static computation as an experiment in the laboratory,
a probably varying temperature during the experiment can represent a
‘time’ dependent factor, if the stationary temperature is not reached yet.
Material properties such as the conductivity of a field-exciting conductor
change with varying temperature and thus the resulting field as well if a
voltage is imposed as excitation. This effect can be taken into account by
defining the material at the particular temperatures in the different
materials assuming a stationary temperature during the simulation,

9.1.2 Quasi static problems

A quasi-static field is a time-varying field where no eddy currents are
involved. The field solution does not depend on the time-derivative term
in the differential equations. It can be regarded as a static field for a
particular instant of time. The calculation of the field is performed for a
certain instant of time, and therefore the flux density and the resulting
inductances are calculated for this specific instant of time.

The problem is excited by imposed currents. After the calculation of
the coil inductances out of the solution, the induced voltages can be
derived.

If the field is driven by imposed voltages, a time-dependent solver
has to be chosen to fulfil the voltage law. The applied voltage is the sum
of all induced and resistive voltage drops.

An example of a quasi-static field calculation is an instantaneous no-
load calculation of a device operated by time-dependent currents where
eddy current effects can be neglected, such as an induction machine at
synchronous operation.

9.1.3 Time-varying problems
When eddy currents are involved and have to be considered, a time-
derivative term appears in the differential equations. The varying field
generates induced voltages and currents. The eddy currents are
influencing the field.

Each form of time variation can be modelled either in the time
domain or in the frequency domain. A time-stepping solver is called a
transient solver. When the field is periodic with one or a limited number



238 Modelling of electrostatic and magnetic devices

of frequencies, it is more efficient to perform a field calculation in the
frequency domain instead of in the more convenient time domain. If only
one frequency is involved, this solver is called a time-harmonic solver.

9.1.3.1 Transient, time domain A transient solver starts from given
starting conditions. Depending on actual field quantities, considering the
imposed sources and boundary conditions, the differences of the field
quantities are calculated. Adding these differences to the previous field
quantities leads to the field at the new instant of time. The time
dependence of the field is approximated by a Taylor expansion.

A(t+At)=A(t)+% At+... ©.1

9.1.3.2 Frequency domain A solver in the frequency domain represents
the field quantities, applied sources and boundary conditions as a
summation of phasors rotating at a given angular frequency @ .

A(t)=Re{ZZ,.e"-} . (9.2)
=

From each phasor, the magnitude and the phase, or the real and
imaginary component is calculated. When non-linear materials are
considered, the material characteristic varies at given intermediate
frequencies.

z(:):m{_ii’,.&‘} . 9.3)

kaln

9.1.3.3 Time-harmonic problems In this problem class, all field
quantities, imposed sources and boundary conditions are assumed to be
sinusoidal varying with respect to the time.

A()=RefN2.4e"|=2 -IZlcos{wHarg(Z ) . (9.4)
Fonfll materigl properties it is assumed to be constant in time.
AZ|e)=4(3) . ©.5)

For non-linear material, an effective material characteristic is used.
This characteristic gives a sinusoidal averaged value in terms of the rms
value of the field quantity.

Regarding the magnitude of the magnetic potentials, it can be
noticed that independent sources will cause a potential peak whereas
short-connected conductors will try to keep a constant potential. The
boundary conditions and the external conditions for the conductors
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determine the relative magnitudes of the potentials. The potential is
smoothly distributed over the regions without current.

9.2 Geometry modelling

Devices have a three-dimensional geometry. Very often it is a
complicated shape or the device contains moving parts. It is possible to
reduce the geometrical dimensions to build a FEM mode! with sufficient
accuracy. To obtain a model, symmetries in the device can be used or
transformations on the geometry can be performed in order to describe
the problem with a simpler discretisation.

device
Lhree dimensions  difficult geometry infinite geometry anisotropy moving
| l l bodies
BRAR l

field distribution unchanged in some symmetry:  periodicity: constant
direction ¢ geomelry e peometry geometry

* ficld  ficld with
periodic

field

m ¢ yL YYY J

2D axis- iD Neumenn binary geometrical motion

Cartesian symmetric

e Y

reduction of the gecometrical dimensions boundary conditions transformations

Fig. 9.2, Systematic to reduce the geometrical dimensions of numerical models.

9.2.1 Reduction of the geometrical dimensions
Two-dimensional Cartesian model:

If the device owns the following properties:

1. the dimensions of the geometry compared to those of its cross-
section are long,

2. the shape of the cross-section remains the same along the length
of the model, and
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3. it can be assumed that all flux lines are present in the cross-
section,
a two-dimensional Cartesian model (Fig. 9.3) can approximate the
geometry. Neglecting the end-region effects, typical examples for such
models are cylindrical electrical machines or long inductors.

Fig. 9.3. Geometrical reduction from 3D to 2D Cartesian.

Two-dimensional axis-symmetrical model:

If the properties of the device’s geometry are true,

1. the geometry has a cylinder symmetry, and

2. the field is axis-symmetrical and is not periodic,
an axis-symmetrical model (Fig. 9.4) can approximate the geometry of
the device.

:\ line of symmetry —
Fig. 9.4. Geometrical reduction from 3D to 2D axis-symmetry.

Entire three-dimensional model:

If it is not possible to reduce the geometrical dimension of the
model, the field problem must be solved using a three-dimensional
model. Fig. 9.5 shows, as an example, the geometry of an electrostatic
micro motor. An axis-symmetrical model can not approximate this
geometry because the field is periodic due to the voltage excitation at the
stator electrodes. With known periodicity and employing appropriate
boundary conditions the 3D model can be reduced.

9.3 Boundary conditions

Symmetric geometry and field

If at the axis of symmetry of a model on both sides the same
material is defined, the same sources are in both parts present and the
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same boundary conditions are applied, the field and geometry are
symmetrical according to the line. Considering a magnetic field, the flux
crosses this line orthogonally. The symmetric part can be omitted and
replaced by a homogenous Neumann boundary condition (Fig. 9.6). The
same idea can be followed in a three-dimensional model (Fig. 9.7).

TS
ﬂﬁfﬁg B
L2177 TRREN

G

Fig. 9.6. The Neumann boundary condition represents a line of symmetry.

Periodic geometry and field

If the geometry, the applied sources and the boundary conditions are
periodic with a given spatial period, the field is also periodic. The
smallest common symmetry has to be modelled. The spatial connections
are replaced by binary boundary conditions (Fig. 9.8). In Fig. 9.8 the field
is periodic with one pole pitch. This is the smallest common symmetry
with respect to the field and geometry.

9.4 Transformations

Geometric transformations map real geometrical shapes to arbitrary
ones. Depending on the type of differential equation and on the
transformation functions, the differential equation can change.
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Al

Fig. 9.8. Binary boundary condition applied to reduce the model size to Y4 of the
entire cross-section,
Three common reasons for transforming the geometry are:
e to avoid difficulties with the automated mesh generation or
refinement,
e to consider anisotropic materials and
e to compute the field of an infinite geometry.

Geometry

When a model causes difficulties during automated mesh
generation, the shape of the model can be mapped into a simpler one (Fig.
9.9). The back transformation is done immediately after meshing or after
solving the problem. If the problem is solved using the arbitrary shapes
rather than the real geometry, the system of differential equations of the
model undergoes the same transformation.

Fig. 9.9. Transformation of the mesh of a discretised geometry.



10 Examples of computed models

In this chapter, the modelling of realistic technical devices will be
demonstrated on a selected set of examples. All simplifications applied to
the models will be motivated and discussed.

10.1 Electromagnetic and electrostatic devices

10.1.1  Synchronous machine excited by permanent magnets

One of the most popular types of electrical machine used for servo drives
is the permanent magnet-excited synchronous motor. The properties of
this type of machine are a high efficiency and dynamic which combined
with controlled inverters offer advantages when compared to other drive
systems. High-energy permanent magnet material, such as the rare earth
grades Samarium-Cobalt (SmCo) and Neodymium-Iron-Boron (NdFeB),
enable various designs that have already been discussed in the literature
(Fig 10.1, Fig. 10.2).

magnet material

Fig. 10.1. Synchronous machine designs with corresponding FEM mesh of a 6-
pole machine with inget magnets.

The previous chapters have shown that the appropriate choice of
model simplifications depends on the aim of the analysis. The
manufacturer of the machine might be interested in the local saturation
level inside the machine, whereas the application engineer requires the
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lumped parameters to define the controlled machine’s behaviour in the
dynamic drive system.

X }‘ A

o
ATV

*
»,

Fig. 10.2. Synchronous machine designs with corresponding FEM mesh of a 4-
pole machine with buried magnet system.

It is assumed here, that the d/q-axis theory in the analysis of
permanent magnet machines is known. Fig. 10.3 shows the phasor

diagram of the studied machine.
14 A qrazi

Fig. 10.3. Phasor diagram of the studied permanent magnet machine.

The analysis of permanent magnet excited machines using FEM is
performed assuming imposed winding currents. Therefore, end-winding
reactances do not have to be considered in a FEM model. Such effects
must be taken into account in analytical models which use the lumped
parameters that are determined by a FE-analysis.

In this example, the magnetic and geometric periodicities allow the
model to be reduced to one pole pitch. This is achieved by applying
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binary constraints (periodic constraints) to connect both sides of the pole
structure (Fig. 10.2).

10.1.1.1 Static analysis The simplest analysis procedure for this
machine is a single two-dimensional non-linear magnetostatic analysis.
The aim is to obtain the torque at a certain instant of time for a given
current. Induced currents due to the relative motion of stator and rotor are
neglected.

Since the stator mmf is in alignment with the winding phase
carrying the maximum current, it is convenient to choose the time ¢ = 0 in
correspondence with the magnetisation axis of this phase. In this case, the
initial phase angle B of the stator current is equal to the electrical angle
between the stator and rotor mmf. For the steady state conditions at
constant load, voltage and frequency, the electrical angle S remains
constant. Changing the initial angle can simulate different load situations
B. The following data can be derived from the single FEM solution:
local field quantities such as flux density, magnetic field strength
¢ the torque (using Maxwell stress tensor method)

e the flux linkage with the stator winding at this instant of time
e stator core iron-loss.

Iron losses

The iron losses can be approximated knowing the loss
characteristics, the losses per weight at different flux density levels P(B).
Such properties are usually available from the material manufacturer. The
total iron loss in the stator for a given frequency can be determined by an
integration over the stator core volume (10.1).

P, = {P(B)-mdV (10.1)

In a 2D-problem definition this simplifies to a summation over all
‘element losses’ of the core cross section:

P, =Y P(B)A, 0,1, (10.2)

with /; the length of the device, A, the area of the element k and ¢; the
mass density of the material of element £.

Another possibility for the estimation of the losses at different
frequencies is provided by:

Pﬁ=g(cl-%+c,-(s—{})J-B:-A,-cr,-l, (10.3)
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with f the synchronous frequency, c| and ¢ the factors determining the

loss density components (hysteresis losses, eddy current losses). The
material manufacturer must supply these factors. Estimated values can
also be found in the literature.

Torque

As the rotor and the stator magnetic field are in synchronous
operation, one can assume that the field pattemn is the same for each
instant of time.

The relative motion of rotor and stator is not considered. The torque
consists of the synchronous torque, the reluctance torque (if d- and g-axis
reactance of the machine are different) and a cogging component caused
by the interaction of rotor magnets and stator slots. The cogging torque
cannot be analysed by a single solution. It is possible to examine this
torque component by a small sequence of steady state problems, where
the rotor angle and the initial phase angle are changed simultaneously
(using electrical angles) over one slot pitch. Cogging torque analysis is
very sensitive to errors in the flux density computation in the air gap
region. It is therefore recommended to ensure a very fine discretisation
(Fig. 10.4) or/and using higher order elements in the air gap region.
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Fig. 10.4. Equipotential plot (load condition) and discretisation close to and
inside the air gap of a buried magnet synchronous motor.

The loss computation using the above equations neglects the local
variation of the flux density. The described analysis assumes a constant
level of saturation at all times. In reality the saturation is shifted locally
with the rotation of the magnetic field as well. Resulting higher harmonic
fields may considerably increase the iron losses in the stator but are not
considered in this approach.

10.1.1.2 Sequential analysis Next to the single analysis, a sequence of
steady-state analyses is suggested. This approach is not equal to a
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transient analysis including motion. The type of analysis remains the
same, non-linear and magneto static.

The mesh used in the single steady-state analysis remains unchanged
for this approach. A sequence of analyses has to be prepared, in which the
rotor position and the initial phase angle are varied simultaneously (in
electrical angles). The current density (according to a defined load
situation and instant of time) is applied to thie stator winding regions. To
generate a sequence of meshes, the following tools can, if available, be
used:

¢ parameterisation of both geometry and excitation with automated
re-meshing of the model
e the use of special air gap elements (elements with overlapping
shape functions, sliding boundaries) to avoid the re-meshing of
the model for every new rotor position
e BEM/FEM coupling; the boundary elements are in the air gap,
and the non-linear ferromagnetic parts of the machine are
modelled by the FEM
e scripting facilities, which allow creation of new models using
combinations of commands normally entered by the user.
As a sequence of analyses is carried out, it is highly recommended that
the post-processing is automated as well.

Induced voltage at no-load operation

To evaluate the induced winding voltage, generate a sequence of
models with different rotor positions and the permanent magnet
excitation only. The offset in rotor positions must be chosen smaller than
the slot pitch to consider the slotting effects. Compute the flux linkage
with each phase at each rotor position using (5.344) or (5.345). From this
result, the induced voltage in the stationary winding is given by:

__dy()
e(r) i ; (10.4)

w(¥) is the flux linked with the entire phase winding, considering all
poles. If the FEM model consists only of one pole (Fig. 10.2), this must
be taken into account. The rms value of the induced voltage E; may be
determined by integrating the induced voltage time form over one
electrical period. The induced voltage may be compared to a no-load
generator experiment. The machine is driven by another motor at constant
speed and the terminal voltage is measured. The induced voltage from the
permanent magnets at no-load is different from under load conditions.
The saturation of the flux paths is different in this case. This voltage may
therefore not be used to determine the d-axis reactance under load
conditions.
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Flux linkage

The flux linkage with the stator winding over one electrical period
under load condition can be evaluated by generating a sequence of
models which covers half a period of the stator current excitation. For the
computation of the induced voltage time form apply (5.344), (5.345) and
(10.4). The inner torque angle is given by:

5 =ﬂ+¢,—§ (10.5)

where the phase angle ¢, is determined from the phase difference between
the induced voltage and the given current (Fig. 10.3). As illustrated in the
phasor diagram, the d- and g-axis components of the induced voltage are
defined by:

E =E, cosd,=E +I-cosf X, (10.6)

E,=E siné,=1-sinf-X_ (10.7)
where E and [ are the effective values of voltage and current. Whereas
obtaining X, from (10.7) is straightforward, E, under load condition
cannot be assumed to be equal to E; at no-load. This assumption leads to
very inaccurate results.

Skewing effects

The models described above neglect skewing. The influence of
skewed stator slots can be considered in the following way. However, at
the expense of higher computational cost, skewing can be taken into
account by a rather simple concept:

Analyse a sequence of models that have the equal stator current
excitation, but the rotor position is changed over fractions of the skewing
angle. Each model serves as a partial model of the entire machine with
length /=1/n, with n the number of models generated per skewing angle.

Cogging torque

While the sequence of models under load conditions is evaluated,
the torque may be computed as well. The resulting torque time form
allows the evaluation of the cogging torque, provided that the steps
between two models in the sequence are chosen smaller than the slot
pitch.

Iron losses

The actual iron losses depend on the local change of the flux
density. The results given by (10.1) and (10.2) assume a single frequent
sinusoidal change of the flux density with respect to the time. The
realistic local change of the flux density however is different. Whereas
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the vector of the flux density in the tooth head describes an elliptic path
over one electrical period, the flux density in the tooth shaft is always
parallel with the tooth but changing its direction. This behaviour can be
examined by reporting local flux density vectors (describing selected sub-
volumes of the iron core) over a sequence of loaded models. The
hysteresis losses may then be computed by the summation of the
prescribed area in the hysteresis characteristic for all the taken sub-
volumes.

10.1.1.3 Loading method The above procedure for the determination of
the lumped parameter model of the studied permanent magnet machine is
computationally expensive. The saturation-dependent value of the
induced voltage generated by the magnets (10.6) cannot be determined
accurately.

Therefore, the combination of the finite element method with the
analytical calculation of this type of machine is an interesting concept.
This method is called the loading method, as all parameters are
determined under load conditions, considering the mutual influence
between the direct and the quadrature axis fields.

Equation (10.6) is underdefined, as Ey and X, are unknown. The
idea consists of a linearisation around the operating point at a given load.
A small change is applied to the load (the stator current), assuming that a
small change does not influence the saturation level of the machine. With
this assumption the reactance and the induced voltage generated by the
magnets do not change. A second equation can be obtained from this
linear solution:

E, =E -cosé, =E +I-cosf-X_, . (10.8)

From (10.6) and (10.8), E, and X can be calculated. Combining this
approach with the sequential approach above, E; and & can be derived
from the time form of the induced voltage and the given current time
form. Two static problems per time instant have to be prepared for the
analysis at a given load. The first one is a non-linear static model, equal
to the models prepared for the single steady-state analysis. The accurate
alignment of the rotor and stator magnetic axes is very important. The
problem is solved and the solution is saved for later post-processing. At
the same time, the local values of the permeability (reluctivity) in all
elements are saved. A new linear problem is defined, with a small change
in the stator current {around 5%). The model is solved using the (fixed)
permeabilities from the non-linear solution.

The combination with the sequence approach increases the
computational cost. At each instant of time, two FEM models must be
solved, However, E, and &, can be determined in a faster way. Both values
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can be determined by using a Fourier series of the vector potential 4
along a contour inside the air gap (near the stator surface).

4(9) ="+ 2[0, cos[g] +b, sin(;T'g]] (10.9)

with v the ordinal number of the harmonic, m the maximum harmonic
considered (higher than the slot harmonics) and 7, the pole pitch in
degrees. Due to the symmetric design of the machine, the agp-term
vanishes, The angular dependency can be transformed into the time
domain considering the synchronous speed of the machine. With the
alignment of rotor and stator magnetic axis, the cosine term coefficient a,
in (10.9) represents the quantity of half the g-axis flux per pole and unit
depth. The sine term coefficient b, represents the quantity of half the d-
axis flux per pole and unit depth.

The following data can be extracted from both solutions. The
resultant flux per pole is given by:

4,=2-1-Jai+b . (10.10)

The inner torque angle is:

0, = arctan(ﬂ] . (10.11)
al

The effective value of the induced voltage can now be evaluated
using the analytical expression:

2
E, —E-fs-;ﬁ.-N-k, (10.12)

with f, the synchronous frequency, N the number of series turns per phase
and £, the stator winding factor for the fundamental harmonic (product of
winding distribution factor and pitch factor). It should be noted that ¢_ is

a magnetic quantity and represents a magnitude value, but E is an electric
quantity representing an effective value. Skewing can be considered by
an additional skewing factor that is multiplied with the winding factor.

The d-axis reactance and induced voltage from the magnets under
load conditions can be determined by applying (10.9) to (10.12) to both
FEM solutions. Inserting the known values into (10.6) and (10.8) yields
the value for E; and X,,s. The leakage reactance of the end-winding may
be determined analytically or with a 3D end-winding model.

The g-axis reactance is determined by using (10.7) and adding the
end-winding leakage reactance.

The entire input power for the m-shase machine is given by:

P=m(EJ +11(X,-X )+ I'R (10.13)
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with R, the ohmic resistance of the stator phase winding at operating

temperature,
The electromagnetic power can be obtained by employing:
P=mEIL +11(X_ -Xx_) (10.14)
and the electromagnetic torque can be calculated by:
2
I =p-— (10.15)
27,

with p the number of pole pairs.

Ohmic losses are considered in the input power (10.13) whereas the
iron losses are neglected there. They can be estimated using (10.2) and
added to (10.13). Rotor losses are neglected.

It must be noted that this method can not be applied for the overall
motor characteristics. X; and X; can not be evaluated when /; and J,
respectively are zero. The underlying equations would require a division
by zero.

A harmonic analysis can be performed by introducing harmonic
ordinal numbers and dependencies {(winding factors for the harmonics).
Combining the loading method with the sequencing approach requires a
different error discussion as the application of the loading method alone.

Combining the loading method and sequencing approach requires
that the post-processing for the loading method is applied after the
sequence of solutions is obtained. The computation of the time form of
the induced voltage requires the differentiation of the time form of the
linked flux. Effects of induced currents are neglected in the analysis.

By applying the loading method only, the quantitative influence of
the relative motion of rotor and stator can not be considered because the
parameters are determined from one rotor-stator alignment only.
However, as the slot harmonics are present in the Fourier-series
expression of the potential, they will be present as well in the voltage
time form derived from this expression. The exact value of the derived
quantities will be erroneous.

The linearisation around the working point, which is the underlying
idea of this method, imposes an error. Imposing the permeabilities to the
state at the given load decreases this error. The changes in the stator
current for the linear model should not exceed 10% of the load current,

The leakage field crossing the slots is not considered using the
introduced approach. It could be examined along contours inside the
slots, integrating the penetrating flux through the contours. This flux has
to be subtracted from the flux computed with equation (10.10). The
advantage of the loading method is its low computational expense when
compared to the sequence method or to a transient analysis.
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10.1.1.4 End-winding reactance The end-winding inductance is a
lumped parameter that cannot be computed by a 2D approach. It is aiso
addressed as the end-winding leakage reactance, because the flux linked
to this part of the winding is a leakage field. Theoretically, it is possible
to compute the end-winding leakage from the difference between the
measurements and the computed results using the flux linkage approach.
The end-winding leakage inductance can be determined from the
comparison of measurements and two-dimensional finite element
computation employing:

i =—L-(E—‘}lgi)-m(5—5,) (10.16)

with & the measured and &; the computed torque angle. As the end-
winding leakage reactances are typically small compared to the main
reactances (4-10%), this requires a high accuracy of the measured data.
Furthermore, for the comparison of measurements with computed
operating points, the excitation current, in particular /; and I, , are
computed from the measured data, resulting in the analysis of a slightly
different operating point. The measurement error is amplified.

Another possibility is the determination of the end-winding leakage
inductance via the stored magnetic energy in a 3D model of the end-
winding region (Fig. 10.5a). Taking advantage of symmetries in the
machine, only one pole (or multiples of poles) have to be modelled. The
inductance is determined from the stored magnetic energy by:

=2 Zmog 2:2p (10.17)

with n, the number of poles included in the 3D analysis, 2p the number of
poles of the machine. While the post-processing is rather simple, the
generation of the 3D model requires considerable interactive time and
computer resources.

A linear, magneto static analysis can be performed, with only one
coil system excited. The face of the non-modelled iron core towards the
end section of the machine is constrained in order to generate the effect of
infinite permeability of the iron core (Fig. 10.5b) and to reduce the model
size. The remaining boundaries are symmetry boundaries, and thus the
flux is enclosed. This is an imperfect modelling of the shielding effect of
induced currents in the aluminium or cast iron frame of the machine,
Furthermore, the accuracy depends on the quality of the discretisation.

10.1.2 Induction motor
The finite element model used for the induction motor analysis is usually
two-dimensional (Fig. 10.6) and describes a part of the cross-section of
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the motor. Three-dimensional models are applied to compute particular
details of the machine such as the end-winding parameters.

a) b)
Fig. 10.5. 2} FEM mesh of the end-winding of the studied machine with a double
layer, chorded winding and b) schematic of the applied boundary conditions
using a 2D field solution on a planar cut in the axial direction.
—— stator winding

rotor bars
cool chmmel

Fig. 10.6. Cross section, winding layout and 2D mesh of the studied 4-pole
induction motor,

10.1.2.1 Non-linear time-harmonic problem It is essential for the
induction motor analysis to consider both effects, saturation and eddy
currents, simultaneously. This requires a computationally expensive
transient solution or can be approximated using a time-harmonic solution
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in combination with a modified magnetisation curve (method of effective
reluctivities) or a combination of static and time-harmonic solutions.

Effective reluctivity

In this method, a time-harmonic solution is recommended. To
consider the non-linear characteristic of the ferromagnetic material, the
reluctivities are adapted in an iterative process of successive time-
harmonic solutions. Using Newton iterations yields in a faster non-linear
time-harmonic solver; a relaxation approach is possible as well. Here, the
reluctivities are adapted following the iteration scheme:

v = (- @)+ vPa (10.18)
0 < a <1is the relaxation factor.

It is assumed that the magnetic field strength is sinusoidal varying
H = H_sin{@*) . To consider the AC excitation of the magnetic field and
thus the time dependent reluctivities, instead of using the regular BH
characteristic, the values of an effective magnetisation curve is chosen.

To calculate the effective characteristic it is assumed that the stored
magnetic energy over one period of H must be equal to the energy by
using the effective characteristic.

1 11’ B
E?H_qu . ]( njﬂ(b)db)m . (10.19)

Another possibility for determining the effective magnetisation
characteristic is to choose the average value over one period.

v=%:[v(t)it ; (10.20)

Combination of time-harmonic and static solution

An alternative approach to determine the element reluctivities for a
non-linear time-harmonic problem consists in employing a magneto static
solution. With the static solution, the saturation of the operational point is
approximated. To define the static problem, the exciting currents and
voltages have to be imposed. Their values can be obtained by a time-
harmonic solution equipped with reluctivities reached in the static
computation. This approach represents an iterative process (Fig. 10.7).

10.1.2.2 Problem definition The time-harmonic problem is defined by:

V- (WA)- jo-ogd=J, (10.21)
with @ =2af the angular frequency of the problem. In an induction
machine the stator currents vary with the stator frequency f, while the
rotor currents vary with slip frequency:

fi=sf, . (10.22)
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solve a time-harmonic
problem Py,

[
extract the current densities
Vi period shifted in time
|

solve two static
problems Py, Prosginary

I
exlract the reluctivities
v=_(v_+v )2

end of iteration

Fig. 10.7. Combined static and time-harmonic solutions to consider non-linear
time-harmonic problems.

Slip frequency

Using imposed currents at slip frequency with given phase angles
can define the problem

V (WA)-j-2nf, cA=J,. (10.23)

If a voltage-driven problem with rotor frequency has to be defined,
some changes are recommended to obtain a correct solution. The terminal
voltage has to be transferred by multiplying by the slip s and the
conductivity of the stator winding by the factor 1/s .

Stator frequency

Defining as a function of the stator frequency, the problem is:
V-(WA)-j2z f-sod=J, . (10.24)
The solutions obtained with rotor slip frequency f, and conductivity

o deliver the same solution as the problem defined by the stator
frequency £ and transferred conductivity so . The latter approach is

preferable because only one parameter, the rotor conductivity, has to be
changed. No additional changes are necessary. The rotor resistance
increases by the decreased conductivify, but the rotor reactance increases
with the same factor due to the higher frequency. The product of
frequency and conductivity determines the induced currents, Losses in
the rotor are a factor 1/s considered too low.
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10.1.2.3 External circuits To form the short-cut loops of a rotor cage
winding, a lumped parameter model representing the end-ring
impedances (Fig. 10.8) has to be coupled to the 2D FEM model. Zj is the
end-bar impedance and Zg the impedance of the end-ring. The resulting
external circuit equations are simultaneously solved with the field
problem.

Fig. 10.8. Coupled FEM - external circuit rotor model.

The parameter of the external circuit must be calculated analytically
before the field computation or computed by a numerical method.

10.1.2.3.1 End-ring parameter During load operations, the end-ring
resistance has the most significant influence on the motor behaviour.
Although the resistance of a ring-segment Ry is much smailer than the bar
resistance Rp (about 1 % of the bar resistance), its influence can be up to
20 - 30 %.

R.‘, =R, +——R;"—— . (10.25)
ZSin’LP—nJ
N1

The equivalent bar resistance R.gn is the resistance to be used to
include the Joule-losses in the ring when calculating the rotor losses due
to the bar currents. N, is the number of rotor bars and p is the number of
pole pairs. To calculate the ring resistance Ry of the entire ring:

— ZHDR

R, = K 10.26
*“at(D,-D) " ( )

with
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i (ﬁjzp

X, =_1\%[1 —[%D (10.27)
Tyt

R
is applied. Dj; is the inner diameter of the ring and ¢ the thickness. Current

redistribution in the end-ring is not considered. The end-bar resistance is
given by:
gl
=—£ 10.28
=t (1028)
with S the cross-section If the length £, of the end-bar. To describe the
influence of the end-ring, the inductance:
N, (1 ,

L = ,,q;[g(ln -L ) kr) (10.29)
is used. With 7y the bar length, / is the length of the iron lamination, 7'
is the pole pitch diameter in the middle of the ring 7’ =’;—Df- ,k=0.18 for

P

p=1and k = 0.09 for p > 1 (Liwschitz-Garik ). (10.29) expresses the
influence of the end-ring per bar. To compare the analytical formula with
the 2D and 3D calculations, expression (10.29) is multiplied by

2sin‘(p7”] to refer it to the ring, as done in (10.25) and multiplied by N,

2
in order to obtain an expression for the ring inductance Lg:

g=““@@4ﬁu@am{g) . (10.30)

3p 2
The value of the ring inductance of the motor under consideration
using (10.30) is Ly = 0.84 pH.

10.1.2.3.2 2D/3D computed end-region parameters
Two-dimensional FEM model

For the 2D finite element calculation, a model is made of the axial
cross-section of the motor end-region (Fig. 10.9). A 400 kW traction
motor is modelled. The accurate modelling of the cross-section is difficult
to obtain since it contains a number of different materials with different,
often unknown and generally anisotropic magnetic properties. Also for
the correct modelling of the boundary between bearings and frame or
bearings and shaft, questions arise as to whether to model them as good
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or bad magnetically permeable. To overcome these questions, a number
of models are built using different boundary conditions and materials in
order to find the influence of each component of the end-region.

rotor bar

end-ring

bearing

/lhame

|
|
|
| -
|
|
.

P linc of symimetry

Fig. 10.9. Axial cross-section of a squirrel-cage induction motor end-region.

Two extreme situations are considered, one where the boundary of
the frame, bearing and shaft is considered to be a flux line (Dirichlet
condition), the other where the boundary is considered perfectly
magnetically permeable. The finite element problem is described as axis-
symmetric. A unit current is considered to flow in the end-ring. The
problem is defined as time-harmonic, neglecting saturation. The
following figures (Fig. 10.10, Fig. 10.11) show flux plots for some of the
models considering the different boundary conditions and material
properties.

Fig. 10.10. Only the air around the end-ring is modelled and considered being a
flux line.

The inductance values obtained from the computations Fig. 10.10
and Fig. 10.11 are 0.35 pH and 0.42 pH. When all boundaries are
considered to be magnetically conducting, only the air surrounding the
ring has to be modelled (Fig. 10.12).
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Fig. 10.11. Ferromagnetic stator and rotor iron considered.

1
-

Fig. 10.12. Outline of the finite element model to study the magnetically
conducting situation.

Line ab in Fig. 10.12 is constrained to be a flux line. It is necessary
to have at least one piece of the boundary considered to be a flux line. If
not, there is no physical interpretation for the problem. Examining the
solutions of this model, a large variation in the inductance is found when
the distance d is varied. The model requires d being equal to half the core
length. Only then isab a realistic flux line. The inductance value obtained
in this case is 13.05 pH. This is a large difference when compared to the
other extreme situation where all material boundaries are considered to be
a flux line (Fig. 10.10). Therefore, from the 2D approach it is not obvious
which value for the ring inductance has to be used as lumped parameter
in the coupled finite element-circuit model.

The 2D approach has some additional drawbacks:

o The correct excitation of the ring via the bars can not be
accounted for in a 2D axis-symmetric approximation. Therefore,
the inductance of the bar-ends outside the iron core are not
included in the calculations.
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e By exciting the ring in an axis-symmetric problem definition, a
flux through the shaft is introduced. Since only the leakage part
of the ring-inductance is needed, the coupling with the stator
end-winding has to be considered. It is obvious that all flux
through the frame links both end-ring and end-windings.
Therefore, it is part of the mutual inductance and not part of the
leakage components.

To conclude, separating the mutual and leakage components can be

performed only using a three-dimensional model of the details in the end-
region.

Three-dimensional FEM model

stator iron

Fig. 10.13. Three-dimensional material mesh generated by extrusion in axial
direction,

The 3D model is built using an extrusion-based mesh generator. Due
to symmetry, only one fourth of one end-region has to be modelled. The
3D model consists of a material mesh and a set of coil meshes required
for the currents. Both meshes are generated separately allowing a
different extrusion direction for material mesh and coil meshes. It can be
noticed that a part of the iron core is modelled as well (Fig, 10.13).

The stator end-winding is not incorporated in the material mesh. The
end-winding is modelled as a set of current-driven coils in air. This is
feasible since current redistribution due to skin effect is negligible in the
stranded stator end-winding. In the end-ring and the rotor-bars, skin
effect cannot be neglected. Therefore, they are considered in the material
mesh. Fig. 10.14 shows part of the material mesh (end-ring and bar-ends).

Referring to Fig. 10.14, it is obvious that the generation of the stator
end-winding coils requires a more complex extrusion procedure when
compared to the modelling of the material mesh. Therefore, the building
of such complex models using extrusion techniques is only possible if
material and coil meshes can be built separately, Because the stator-end
winding is not modelled in the material mesh, the coil meshes have to
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represent the actual end-winding geometry as accurately as possible. This
is not required for the coil meshes used for the excitation of the end-ring
and bar-ends. Because the end-ring and bar-ends are modelled in the
material mesh, the coil meshes for exciting them only have to be inside
the materials and to provide a path for the current to flow. The current
occupies the full material available considering skin effects.

Fig. 10.14. Material mesh of end-ring and bar-ends and coil meshes of the stator
end-winding.

Both stator and rotor coils are defined as current driven. In the 3D
model, 9 full ring-segments and 2 half-segments are present (Fig. 10.13,
Fig. 10.14). Therefore, 11 rotor coils are required for the current
excitation, Twenty-two current-driven coils represents the stator winding,.
Only 2 end-winding coils are completely inside the model; the other 20
coils are cut off at the boundaries of the model (Fig. 10.14). Fig. 10.15
shows two of the coils used for the end-winding excitation, the two coils
which are completely inside the model (coil 1 and coil 2), together with
three other coils which are cut off at the boundary of the model. When
referring to the cross-section of Fig. 10.13, coil 1 occupies the upper half
of the first stator slot (the slot in the upper left corner) and the lower half
of slot 11; coil 2 occupies the upper half of the second slot and the lower
half of slot twelve. In the real motor, each of the stator coils contains four
turns. The currents for both rotor and stator coils are obtained from a two-
dimensiona] finite element analysis.

Five inductances can be calculated:

Lz end-ring inductance

Ls end-winding inductance

M mutual inductance between end-ring and end-winding
Lor end-ring leakage inductance

L end-winding leakage inductance
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Fig. 10.15. Coil meshes representing the end-winding model.

The inductances are calculated based on the stored energy in the
model. To determine both leakage components and the mutual
inductance, three problems have to be solved: one having only the stator
coils excited, one having only the rotor coils excited and one with both
stator and rotor coils excited. Considering the stored energy in these
problems to be Wy,;, Wy and Wi, the following equations can be given:

w =2l 2

ml 28 sl

1 2 mly o o (10.31)
V2294 R'R "2 IR
mly2 . mly dy2e(mly i ey i
Wm3 > BLSII + > sLR(IR) :t(2 5 MRsI]lr+ > sMsRlllR)
where
L end-ring inductance referred to the stator,
ir ring current,
"R ring current referred to the stator,
i stator current,
Mg, Mz mutual inductance between stator end-winding and rotor
end-ring,

m number of phases (m = 3),

Since the rotor values are referred to the stator, Mg, = Mg = M. The
value Wy, is less than Wy, + W2 (the negative sign has to be applied in
the expression for W) if the flux caused by the rotor excitations opposes
the stator flux. If the rotor flux supports the stator flux, W, is larger than
Wi + Wpa. Under regular conditions, the rotor flux opposes the stator
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flux, resulting in Wp3 < Wy, + Wy, The division by eight or four in
(10.31) considers that only one fourth of the end-region or one fourth of
the end-ring is modelled.

In the case where only the mutual inductance has to be calculated, it
is sufficient to solve two problems, the first with the rotor flux opposing
the stator flux, and the second with the rotor flux supporting the stator
flux. The difference of both stored energy values is only 2 function of the
mutual inductance and the applied currents. Introducing the end-ring
leakage referred to the stator, ;' , the different inductances can be

ar

calculated by:
28

Ls=WmI;‘.2 5 -Ls_M
1
2 8 ] 1
L'=w =~ L =L -M
B y M oB B
TEm L) (10.32)
boatp 204 L oop leB_g | M
B_m2i2 aﬂ“BL"r 7
B B B
M=(W -W _-W JL
m3 ml m2 3
1B

Because the three-dimensional calculations performed are assumed
to be linear, the number of calculations is reduced. The calculations with
only the rotor- or only the stator-coils excited, are performed only once
with a unit current. From both calculations, L, and Ly are obtained. Using
(10.31), the values for the stored energy W, and W, for the actual

currents i; and ig (or i;t) are obtained. Therefore, for each studied slip

value, only one additional calculation is required with both rotor and
stator coils excited.

Some results of the calculations of the different inductance
components are collected in Table 10.1. It can be noticed that both
mutual and leakage components are strongly slip dependent. It can be
stated that during no-load operation, the full stator end-winding
inductance L, represents a leakage reactance. Therefore, the end-winding
leakage inductance L varies from 0.49 mH (at no-load) to 0.28 mH (at
standstill). The mutual inductance increases when the slip increases; the
end-winding leakage inductance and the end-ring leakage inductance
decrease with the same amount. Furthermore, the end-ring leakage
referred to the stator, L'w is found to be of the same value as the end-
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winding leakage inductance L. This already is an indication that the
influence of the-end ring leakage is not negligible at all load situations.

Table 10.1. Calculated inductance components for different slip values.

inductance slip
[mH] [%]
0.34 1.42 100
Ly 049 0.49 0.49
Ly’ 046 046 046
LR 0,65¢e-3 0.65¢-3 0.65¢-3
M 0.13 0.19 021
LR’ 033 0.30 0.25
LaR 0.47e-3 0.42¢-3 0.35¢e-3
L, .36 030 0.28

as

To predict the behaviour of the induction machine accurately,
particular attention to the calculation of the resistance of the end-region
of the squirrel-cage is recommended. It was assumed to have uniformly
distributed current in the end-bar and end-ring (10.26). Computations
using a 3D model result in a higher accuracy, and point out that the
assumption of a uniformly distributed current is not valid (Fig. 10.16). It
can be noticed that eddy current effects are present in the parts of the bars
located inside the iron core and that a non-uniform current density
distribution is computed in the end-rings.

iron lamination

8341
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Fig. 10.16. Current density distribution in the end-ring region at start-up.
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10.1.3  Electromagnetic shielding
Electromagnetic compatibility (EMC) is becoming more and more
important in the design of electromagnetic devices. The product must
satisfy intemmational and national regulations and standards. The
developer of a product has to be aware of two items: the generation of
electromagnetic waves by his product, and the influence from outside
fields to his product. This chapter will discuss the second issue, the
problem of electromagnetic shielding. Magnetic fields can be shielded by
applying two phenomena:

e high permeable material and/or

* induced currents,

Both problems will be discussed here. Studying shielding problems
with the FEM analysis raises the difficulty of a sufficiently fine
discretisation of the considered domain. The skin depth (penetration
depth) of magnetic fields into high permeable or conducting material
plays an important role in the pre-processing of the FEM model. The
choice for 2D or 3D modelling will not be discussed, as this decision is
based mainly on the model geometry.

Depending on the type of shielding (permeable material/eddy
currents), the penetration depth of the field into the structural elements
must be estimated beforehand. The estimation of the penetration depth
can be performed by:

S |2 (1033)
opc

with the permeability x4, conductivity o and the angular frequencyw . If
the penetration depth can be discretised sufficiently finely to allow a
potential variation that approximates the exponential change of the field,
the full structure can be modelled. Practically, this is the case if at least 3
first-order elements can be defined in the skin depth. The best choice is a
FEM analysis using mesh refinement. However, sometimes it is
impossible to discretise the model finely enough to cover large extensions
of the modelling domain. For instance, in the case of a transformer
shielding, the model dimensions are in the range of metres, whereas the
dimensions of shielding walls are in millimetres. In this case, special
formulations may be applied, like thin-iron-plate elements or impedance-
boundary conditions.

10.1.3.1 Thin iron plate elements If the thickness of an iron wall is too
fine to be discretised with finite elements, thin iron plate elements
provide a way to model such structures, In 2D these are line elements and
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in 3D they are surface elements (triangular-shaped using tetrahedrons as
the 3D finite elements). With such elements a material characteristic and
a thickness is associated. Within the thin-plate element there is no
component of magnetic flux density perpendicular to the plate. In reality
this will be the case if a low permeable material such as air surrounds a
high permeable material such as iron. For the time-varying field analysis,
the material is assumed to be non-conducting.

The magnetic shielding of a monitor serves as an example. The
analysis is performed to compare measurements taken in a test rig. This
test installation employs a set of Helmholtz coils to generate a
homogeneous field of defined direction in which the monitor is placed
(Fig. 10.17).

Fig. 10.17. Monitor located inside a set of 6 coils generating a homogeneous
field of defined direction.

The shape and position of the set of coils requires a 3D analysis. The
extent of the volume span by the set of coils is 1 metre. The surrounding
air is modelled up to 6 metres. The iron-plates are modelling the surface
of the monitor housing. They are assumed to have a thickness of 3 mm
and are surrounded by air. A magnetostatic 3D analysis is performed. The
Helmholtz coils are excited with currents producing a homogeneous field
directed in parallel to the view-axis into the screen of the monitor. This is
the worst case, as the screen area cannot be shielded.

Local field quantities outside the thin plates can be derived in the
usual way using the form functions of the element types used. Field
quantities inside the thin plate elements require a special post-processing
and the results may be viewed using a surface mapping technique.

No field component perpendicular to the plate is considered inside
the element. This could introduce large errors if the thickness of the
material is in the range of the other dimensions of the plate, or if the
surrounding material’s permeability is of similar value.
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Fig. 10.18. Magnitude of the flux density inside the monitor nearby to the
shielding.

10.1.3.2 Impedance boundary condition Whereas the thin-plate
elements can be used only for non-conducting, highly permeable
material, impedance boundary conditions may be used to model
conductors with a small skin depth. They can be applied only for time-
harmonic or transient problems.

The idea is to provide a boundary condition specifying the ratio of
the electric to the magnetic field, at a surface, to be equal to a complex
number. It is assumed that the actual distribution of the field inside the
material, which is replaced by this boundary, is not of interest. Such
boundary conditions may be used when the skin depth is relatively small
compared to the size of the conductor.

The value of the impedance to replace the conductor can be
estimated by:

1+
A ] (10.34)
o6
with o the conductivity of the conductor and & the skin depth estimated
with {10.33). This can be performed automatically by the FEM program,
if implemented, or can be provided by the user.

Local field quantities inside the model can be derived in the usual
way by using the form functions of the element types used. Field
quantities inside the replaced conductor require special post-processing
and the results may be viewed using a surface mapping technique. It is
possible to compute the ochmic losses in the replaced conductor as well.
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10.1.4 Permanent magnet mini-motors

The design of mini motors requires the use of advanced three-
dimensional field analysis methods to obtain the field distribution and
subsequently the elements of the equivalent circuit and the torque.

Very small motors based on the electromagnetic principle are
excited by high-energy rare earth permanent material such as NdFeB. The
overall dimensions of such motor devices are found in a range of some
millimetres.

10.1.4.1 4-pole motor with block shaped magnets The studied motor
is from the axial flux type, equipped with an etched planar double layer
winding in a double stator system (Fig. 10.19). In order to avoid cogging
torques an air gap winding is used.

stator iron
permanent magnet poles
armature windings

layer 1 layer 2 P g T
@®®@ @?@ 2 pole FEM winding model
layer 3 leyer 4

Fig. 10.19. Electromagnetic mini motor with 3D finite element mode] and
armature winding layout.
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In this type of application, the supply source is an essential part of
the system. Due to the non-linearities of the ferromagnetic parts of the
machine, the link with the time pattern of the supply voltage cannot be
simulated using superposition. The motor is operated as a brushless DC
motor. Constant DC currents are switched to the armature winding in the
stator according to the signals of a position-sensing system equipped with
hall sensors. The rotor is constructed with NdFeB permanent magnet
blocks of the dimension 2x2x2 mm. The use of high-energy permanent
magnet material can lead to significantly improved efficiency and
performance of small electrical machines. The high remanence and
coercivity at room temperature makes this material particularly attractive
for this type of machine. However, the sensitivity of the coercivity of
NdFeB to high temperatures calls for increased attention to the thermal
aspects of a design. Integrated designs using NdFeB magnets are cost-
effective for fractional and sub-fractional horse power motors.

In the design stage, the target is to obtain reliable results predicting
the operational behaviour of this device. Macroscopic parameters,
reactances and reluctances, describe the technical physical properties of
the machine. Due to the presence of ferromagnetic materials, the
calculations have to account for the non-linearities,

To extract the parameters for a simplified equivalent circuit, the
inductance is found from the stored field energy after replacing the
permanent magnets by air:

Lr
W . = - (10.35)
The torque is found from the virtual work:
W,
T=—== 10.36
23 (10.36)

The evaluation of the torque as a function of the rotor position is
performed by a sequential analysis. Once the device-dependent
parameters are determined, the equivalent circuit is modelled and in
combination with the characteristic values of the supplying energy source
(Fig. 10.20), the overall system is modelled, simulated and analysed.

The computed flux density distribution (Fig. 10.21) shows that the
ferromagnetic material of this design is not saturated. A motor
construction with less material could be designed in a following design
approach.
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Fig. 10.20. Switching scheme for the stator winding currents of phase 1 and 2.
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Fig. 10.21. Magnetic flux density at no-load operation.

10.1.4.2 Mini disc-type motor The motor in this example is an axial
field disc-type motor excited by permanent magnets. The outer diameter
is about 45 mm, axial length about 15 mm (Fig. 10.22). The stator back-
iron consists of two discs of ferromagnetic material. The armature
winding is placed on the two stator sides.

The required torque recommends a multi-layer winding in order to
realise a sufficiently high current layer. Therefore, each winding consists
of four layers. On each stator side, eight windings are installed and
connected to form two phases. The rotor consists of a thin disc
constructed with a sintered NdFeB material magnetised in the axial
direction in a multipole arrangement (Fig. 10.23).
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Fig. 10.22. Main dimensions of the mini disc-type motor.

I, armature winding layers
2. permanent magnet poles
3. stator back iron

4. shaft

Fig. 10.23. Three-dimensional finite element model of the disc-type motor.

The supplying current source operates in the same way as
introduced for the permanent motor (Fig. 10.19). To compute the induced
voltage, ‘¥, , the flux generated by the magnets and coupled with one
winding, which is not carrying current, is computed by a sequential
approach as a function of the rotor position (Fig. 10.24). The torque can
be computed for each instant in time by integrating it along the current-
carrying conductors of the winding (Fig. 10.25) and superimposing the
torque generated by the single winding phases.
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Fig. 10.24. Computed voltage induced in one phase at a rotor speed of 1000 rpm.
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Fig. 10.25. Torque characteristics for the disc-type motor (winding coils operated
with 0.5 A).

10.1.5 Design of electrostatic micro motors

Scaling analysis shows that as size is reduced, electrostatic designs
become advantageous over the electromagnetic versions that dominate at
dimensions starting in the millimetre range. The electrostatic micro
motors studied here are based on the principal of variable capacitance.
The operation principle is very simple. A voltage on the stator electrodes
induces a charge on a conducting rotor and in response the rotor moves to
minimise the electrostatic field energy.

The most inexpensive fabrication technology of electrostatic micro
machines is a thin film process for planar structures. Therefore, such
rotating actuators are extremely flat and the generated forces are very
low. The motor with its outer dimensions is shown in Fig. 10.26. Fig.
10.27 shows its corresponding three-dimensional finite element model. In
this case of geometrical symmetry, the mesh is extruded in an angular
direction to build up the three-dimensional structure (Fig. 10.27b).
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Fig. 10.26. Detailed construction and outer dimensions of the studied axial field
electrostatic micro motor.

Fig. 10.27. a) Axial field electrostatic micro motor model and b) the base planes
rotated in angular extrusion direction.

Radial field type machines are also feasible. When the same height
of the machine is considered, the surface that contributes to the
interaction between stator and rotor is much smaller. However, the
problem is that only very small forces can be generated. Using a radial
type of interaction and the LIGA production technique, allowing the
fabrication of higher microstructures, results in higher torque values. This
technique is very expensive. More inexpensive alternatives are developed
but are not capable of supplying the same depth of the rotor. Fig. 10.28
shows the three-dimensional finite element model of a radial field micro
motor.

However, both types of motor can be analysed in an analogue way.
The electrostatic energy stored in the model is evaluated and serves as
data to obtain the parameters of an equivalent circuit.

cyv?

PV«bww& = 2 (I 0.3 7)
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Fig. 10.28. Radial field electrostatic micro motor with FEM model.

The use of this equivalent circuit model enables calculation of the
forces of the motor operated with various voltage cycles without new
computationally expensive FEM analyses.

The desired parameters in the equivalent circuit are the values C of
the capacity between the single components of the geometry as indicated
in Fig. 10.29. The equivalent circuit in Fig. 10.29 consists of 12
capacitances, twice the number of stator electrodes. The capacitance of
each capacitor varies with the rotor position.

Fig. 10.29. Definition of the elements of the equivalent circuit for a 6/8 pole
radial field electrostatic micro motor.

To avoid axial forces on the rotor shaft, the motor must be excited
symmetrically. Fig. 10.30 shows the possible symmetric excitations of a
motor with 6 stator electrodes. The grey electrodes are excited by 1 V and
the rotor electrodes are set to ground potential 0 V.
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Fig. 10.30. Possible symmetrical excitation sequence to perform one revolution
of the rotor.

By applying different excitation cycles to the equivalent circuit, the
torque characteristics versus rotor position can be calculated. Using the
principles of virtual work, the torque is found by partial differentiating of
energy with respect to the angle of rotation:

7= Wocrsae (10.38)
29
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Fig. 10.32. Potential solution of the radial field type micro motor.
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10.2  Coupled thermo-electromagnetic problems

Coupled thermo-electromagnetic problems have to be considered in the
simulation of realistic electromechanical devices and electroheat
installations. To handle this type of problem, an interface program to co-
ordinate the finite element method simulations and to perform
infermediate calculations, such as heat source evaluation, numerical
relaxation and mesh transitions, is recommended.

The material data used to define FEM problems are often strongly
dependent on the temperature. Since material data parameters occur in
many coefficients of the electromagnetic field equations, the calculation
of the electrical and/or the magnetic field coupled to the thermal field is
recommended. The heat generation of electromagnetic nature results in a
coupling of the source term of the right-hand side of the thermal equation.
The combined problem in the electromagnetic and the thermal domain is
generally described by Helmholtz-like differential equations. The
discretisation yields two or more sets of algebraic equations that have to
be coupled numerically: the electric field and/or magnetic field together
with the thermal FEM-equations. Each of them can be extended with an
algebraic set of circuit equations. These include coupling terms as well,
e.g, in resistances.

The discretisations, on which the computations for the single field
problem are performed, do not have to be identical. Sometimes, only a
sub-mesh has a physical meaning: e.g. air carrying a magnetic leakage
flux is replaced by a convection constraint in the thermal model; the solid
parts can be identical. Even the mesh in areas with more than one
continuous degree of freedom can be discretised with different
overlapping geometrical meshes and/or element types. Therefore, mesh
transition operations have to be defined. The groups of algebraic
equations can be solved with a strong coupled or with a cascade coupled
strategy.

The first approach consists of the generation of a large system of
non-linear equations with both types of FEM-equations, associated with
the coupling terms. The mesh transitions and heat source terms have to be
written as linearised algebraic functions. This large linear system may
have unfavourable numerical properties due to the different nature of the
underlying physical equations, resulting in a difficult to solve problem.

The second method (Fig. 10.33) defines an iterative process in
which both sets of equations are solved sequentially. The mesh transitions
and heat source calculations are necessary intermediate steps and do not
necessarily have to be linearised. This approach can be interpreted as a
“decomposition” of the different fields.



Examples of computed models 277

Pre-processin
b Eeasmaian |
[ A

1 \
FEM cafculation

1
I mn!‘n'l fn’fgpo“p‘.’:uuj

I Pon-procullng_]

Fig. 10.33. General flow chart of the cascade algorithm.

The following groups distinguish the operations necessary for the

iterations:

Updating of material properties: The various temperature
dependent material parameters are updated whenever the
algorithm requires it. Therefore, various characteristics must be
implemented. These involve electrical conductivities, thermal
conductivities, permanent magnet material properties, thermal
conductivities, loss coefficients and characteristics.

External process handling: Calls to execute external FEM-solvers
and mesh generators.

Iteration control: Process commands to control the flow of the
iterative loop and evaluation of stopping criteria. These criteria
can be based on absolute or relative residuals or solution
differences between two consecutive weighted solutions of the
total problem or a sub-problem respectively.

Fig. 10.34. Projection of element related values.
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e Data transition commands: When different meshes are used,
mechanisms are necessary to project the field variables onto
another mesh. Basically, this is a per-node interpolation of the
solution.

The projection of the values associated with the element’s surface or
volume, e.g. a calculated loss density, is not straightforward. If the
meshes do not differ very much, the position of the centre of gravity of
the element to be filled in, can be located in the other mesh (black dot
Fig. 10.34). The corresponding element-related value can then be copied.
If the meshes differ much or if a higher order of accuracy is desired, an
average can be generated by means of a numerical integration using
Gauss points (additional white dots Fig. 10.34).

It can be stated that a large difference between the meshes is not
advantageous. It would mean that the related physical domains would
not be calculated with a corresponding accuracy. However, mesh
differences can arise due to local mesh quality reasons.

e Adaptive relaxation of the convergence process: In order to
prevent the non-linear iteration process from divergence and to
accelerate the convergence, an appropriate relaxation method
must be applied. The damping factor can be predefined
according to a certain function of the iteration number or
adaptively, based on a minimisation of the total or partial
(weighted) residual vector.

e Heat sources calculation: For the area covered by every
meaningful element, a heat source density can be calculated based
on the electromagnetic solution (Table 10.2).

Table 10.2. Overview of main heat sources in electromagnetic problems.

heat source oceurs in formula application
Jjoule losses problems with J? conductors in machines,
electrical current =l eddy currents in
(perpendicular to, 9 o o induclion heating
in o planc)
or in a plane
iron losses non-static - \p)  magnetic materials wilh
= +
magnetic field Toen (c‘f cf )B a hysteresis loop
problems
diclectric losses non-static electric - 1 capacitive heating, losses
field problems Yot a)(s, tan 5)E in isolating materials
external heat various look-up table, ... e.g', ventilation, cooling

sources & sinks channels, [riction
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10.2.1 Three-phase high voltage power cable

In this section, the results of a three-phase power cable simulation with
respect to the coupled magnetic/electrostatic/thermal field problem are
shown.

Three-phase power cables exist in many variations and types,
differing in conductor shape, material choice, conductor arrangement etc.
They consist mainly of the following parts, in which several of the
previously mentioned loss mechanisms can be found:

» conductor, usually made of copper, suffering from joule losses

caused by the high current

¢ insulation layers and filling materials, loaded with electric fields

and therefore subject to dielectric losses

Fig. 10.35. Geometry of the three-phase high voltage power cable.

e grounded lead sheath around the primary isolation, shielding
the electric field; due to its relative low conductance, internal
eddy currents can develop

e  mechanical protections (armour), sometimes made of magnetic
steel and therefore subject to hysteresis and eddy current losses

The presence of both electrically related and magnetically related
heat sources leads to a combined model consisting of three field types.
Electric, magnetic and thermal fields that have to be calculated over a
complete or a partial cross-section of the cable and its surrounding.
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The electrical field, described by the scalar potential ¥, is only of
interest in the isolation part loaded with an electrical field. Therefore,
only a mesh covering this region is required to solve the electrostatic field
equations.

The time-harmonic magnetic field is calculated on a larger mesh,
since it is only partly shielded by the mechanical protection and thus a
leakage field can exist outside the model. This leakage flux is considered
by the region surrounding the cable geometry; the far field is modelled by
a Kelvin transformed mesh. The losses consist of joule losses in the
conducting regions, such as the lead, steel and copper and possible iron
losses inside the steel.

The thermal field is represented by the temperature potential
distribution T. The static thermal field region consists of the cable with
the surrounding soil in which it is buried. From a certain distance, the
ground is modelled by a Kelvin transformation and therefore assumed to
be infinitely deep. It is assumed that the ground surface is cooled by
convection.

electric ficld

magnetic field
S emys 5

o ’T—t’{'ﬁ" s ’

thermal field

Fig. 10.36. Problem meshes used to compute the different physical fields.

The element-wise over the previous meshes (electro-, magneto-
static) calculated losses are projected onto the thermal mesh. The
extracted temperatures are used to update the material properties in the
other fields. Basically the dielectric loss factor and the thermal
conductivity depend on temperature, but this is an effect of minor
importance in this example problem. The largest parameter changes are
encountered in the conductivity of the copper.
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To solve the entire problem, a three-domain mesh must be constructed
(Fig. 10.36). The mesh for the electric field contains 9943 first order
triangular elements, the magnetic field mesh 15378 and the thermal field
mesh 15560 elements.

The results of this threefold-coupled problem are collected in the
following figures.

c) Temperature distribution.

Fig. 10.37. Entire solution of the threefold coupled problem.

The temperature in the centre of a conductor amounts 84°C, which
corresponds to reported measurements (Van Dommelen & Germay ''®).
Table 10.3 shows the computed values of the heat sources and their
location within the models.

Table 10.3. Overview of main heat sources in electromagnetic problems.

location loss mechanism value [W/m’]
copper conductors ohmic 597.10"
conductor isolation diclectric 1,17.10
inter-conductor filling dielectric 2,55.10°
material

mechenical protection ohmic + iron 1,23,10*

10.2.2 Coupled simulation for electrical machines
An efficient simulation algorithm for the coupled magnetic-thermal field
of electric machines is proposed. This algorithm uses a combined FEM-
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circuit approach in both magnetic and thermal field regions. FEM
calculations are performed to compute magnetic and thermal phenomena
in a xy 2D Cartesian cross-section, whereas a circuit approach is applied
to consider thermal phenomena in the z direction (Fig. 10.38).

Fig. 10.38. Principle of the combined thermal FEM-circuit-model; the resistances
in the model represent a part of the symmetry of the axial thermal phenomena.
(The cross-links to the next slot are not shown.)

The computations in the magnetic and the thermal domain result in
four sets of equations: the magnetic FEM-equations, electrical circuit
equations, the thermal FEM-equations and thermal circuit equations. The
entire approach to solve the entire problem is a computationally efficient
method. The simulation of a 15 kW TEFC (totally enclosed and fan-
cooled) four-pole induction machine demonstrates the coupled approach.

In general, the heat transport perpendicular to the axis of cylindrical
electrical machines can be modelled with a high accuracy. Less is known
about the effects influencing the heat flow in the axial direction. For
example, the flow of the cooling fluids in the end-regions is very
complex.  Therefore, 3D-calculations should be coupled to a
‘computational fluid dynamics’ simulation, asking for huge
computational efforts.

The circuit approach offers the advantages that the heat transfer in
the axial direction is modelled in a straightforward way, using thermal
resistances. However, the determination of their values is troublesome
and asks for experience and measurements.

Different methods to solve the overall problem are possible:

e A cascade iteration algorithm in which the systems are solved in
successive steps. This results in a poor convergence. On the other
hand loss calculation algorithms can be introduced in a simple
way.

e The solution of a numerically strong coupled large system of
equations in which the four sub-sets together with the coupling
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terms are assembled. This may result in a very ill-conditioned
system of equations. Therefore, particular equation solvers are
recommended to obtain a fast convergence.

e An intermediate approach is possible by placing the FEM-
equations together with their corresponding circuit equations in
one system of equations describing a single physical domain.
These ‘physical’ sub-systems are then coupled in a cascade-like
iteration. This method has a moderate rate of convergence, but
requires less memory.

The time-harmonic magnetic model is coupled with circuit
equations describing the effect of the end-windings, the bars outside the
rotor and the end-rings as already introduced. The thermal mode! consists
of a FEM component, including equivalent convection coefficients to
account for ribs and equivalent thermal conductivities for areas such as
the air gap and the slots. This thermal FEM model is extended by a circuit
approach. The circuit equations represent the thermal paths connecting
shaft, yokes, slots and the frame through thermal resistances and
represent the internal end-region in air, the end-windings, end-rings,
bearings and end-caps of the machine. The resulting temperature
distribution of this coupled approach is plotted in Fig. 10.39. The
isothermal lines in the shaft are caused by heat flowing through the shaft,
a path that is described by a thermal network circuit equation.

Fig. 10.39. Isothermal lines of the temperature distribution,

10.22.1 Modelling of thermal contact resistances In the
electromagnetic-thermal coupled modelling of electromagnetic devices,
the thermal simulation poses some extra difficulties, not present in the
electromagnetic field.

Examples are the mixed boundary conditions as found in convection
(linear coefficient) or radiation (non-linear coefficient). These require
extra adjustments of the finite-element matrix and right-hand-side.
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A second particularity is the presence of thermal contact resistances,
although it can be noted that electrical contact resistances exist as well
when electrical current in the plane of the simulation is modelled. They
are a particular problem encountered in thermal FEM models of the
electromagnetic devices. Examples for this thermal contact interface are:

¢ contact frame-stator yoke
contact stator winding-slot
contact rotor winding/bar-slot
contact rotor yoke-shaft
glue layer between a permanent magnet and the yoke.

Several approaches are known to model such contact resistances.
Corrections to the thermal conductivities of the conductor materials can
be applied to consider this effect. This approach causes an error in the
internal temperature distribution of the conducting region, but the average
temperature is calculated accurately. The temperature distribution is used
to update material data of the related sub-problems. Despite the extra
computational costs of averaging, this approach has the advantage that
there is an obvious geometrical relation between the elements of regions
in the different sub-problems. This is advantageous for projection
methods.

An extra equivalent contact layer of elements can be inserted, filled
with an equivalent contact material. In order to obtain an acceptable
aspect ratio of the finite elements, a sufficient number of elements have to
be generated inside the contact layer and the adjacent regions. Due to the
high number of slots in an electrical machine and the small size of the
contact layer, this yields a significant growth of the numerical model and
hence computation time. The number of elements can be reduced if the
layer is enlarged, but this reduces the size of the conductor and the tooth,
and so no clear geometrical relationship exists between the thermal and
the magnetic sub-problem. If the same model, with the reduced
conductor, were to be used for the magnetic sub-problem, an error would
be made in the leakage flux and the joule heat calculation.

Another possibility is to duplicate the nodes lying on the edges
marking the border between the conducting region and the iron. Extra
terms in the equations modelling the contact are inserted to define the
thermal relationship of the nodes. The standard meshing algorithms have
to be adapted to generate the extra nodes. Moreover, these extra
equations change the numerical properties of the matrix system to be
solved.

The third proposed approach will be outlined. Here, the mesh
generator must be able to double the nodes lying on the contact resistance
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(Fig. 10.40). This must be performed in a consistent way to prevent any
‘crossing’ of the edges of the contact resistance. Standard mesh
generators need to be extended with appropriate search and data
management structures.

i ja

1y iy
Fig. 10.40. Two elements at the thermal contact resistance interface.
Within the FEM code, the standard element matrices are generated
(the right-hand-side remains unaltered). The following extra matrix,

suited for first order elements, is added to the system, The exact values of
the coefficients are obtained using the Galerkin approach.

N i, Ji ot A b _
hclu M - hclf h:I-
3 6 3 6
il M hc_lc — hclc = hclv
¥ 6 3 6 3
(10.39)
b hl, Rl i hl
Ja 3 6 3 6
A
6 3 6 3 J

with . the contact resistance coefficient and /, the length of the
adjacent element edges.

A computed example using this approach is shown in Fig. 10.41. A
partial thermal model of an induction machine is shown, The example
consists of one stator winding slot and a rotor bar. The above relation
models the contacts between the slots and the iron core. This leads to a
set of isothermal lines appearing to be discontinuous. This is not true
since many isothermal lines lie in the temperature jump inside the thermal
contact resistance.
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Fig. 10.41. Computed temperature distribution using the thermal contact
resistances in a slot arrangement of an electrical machine example.

10.3 Numerical optimisation

10.3.1 Shape optimisation for small DC motor

The application of the methods used is demonstrated by the optimisation
of a small DC motor. For the optimisation a (4/4, 12) evolution strategy
combined with the simulated annealing algorithm is used.

The objective is to minimise the overall material expenditure,
determined by permanent magnet-, copper- and iron volume subject to a
given torque of the example motor.

[uts:.ml l_.]
Z(x)=10 ™ '+ penalty (10.40)
The use of penalty term in the form:

T< Tm:lo(!d?%(ﬁ]

1041

penalty =
allows the evaluation of the objective function even if the torque
constraint is violated.

The torque is computed by integrating the Maxwell stress tensor in
the air gap region. Flux density dependent rotor iron losses were taken
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into account at a rated speed of 200 rpm and subtracted from the air gap
torque to form the resulting output torque.

The overail dimensions and the slot geometry of the DC motor are
described by 15 free design parameters. The free parameters are the n/2
edges of the polygon describing the rotor slot contour and the outer
dimensions of rotor and stator as indicated in Fig. 10.42. The motor
consists of a stator back iron with a 2-pole: Ferrite permanent magnet

system and a rotor with six slots.
L. stator back iron

2. permanent magnet
3. rotor iron
4. winding slot

Fig. 10.42. Geometrical definitions and design variables of the DC motor.

The necessary two-dimensional field computation to evaluate the
quality function, to compute the torque of the machine, is performed by
standard two-dimensional finite element analysis. To ensure controlled
accuracy, adaptive mesh generation is applied until a given error bound is
fulfilled.

An initial mesh is generated from any geometry represented by non-
overlapping polygons. Fig. 10.43 shows an initial and adaptive generated
mesh for the example DC motor.

Fig. 10.43. a} initial- and b) adaptively refined mesh.

Constraints result from fabrication conditions. The change of shape
from a sub-optimal initial geometry to the final shape of the motor can be



288 Examples of computed models

taken from Fig. 10.44. It can be noticed that the iron parts of the initial
geometry are over dimensioned. The actual torque of this configuration
was approximately 25% lower than the desired value 7, . The optimised

motor holds the torque recommended, which is achieved mainly by
enlarging the winding copper volume by about 20%. The most significant
change from start to final geometry can be seen in the halving of the iron
volume. Consequently the iron parts are highly saturated, especially the
teeth regions. In comparison to this, a test optimisation with neglected
rotor iron loss results in a 10% smaller rotor diameter. Unfortunately, the
permanent magnet material is brittle, which limits the minimum magnet
height. The magnet volume decreases slightly. Along optimisation the
overall volume off the motor was reduced by 38%. The rate of
convergence is plotted in Fig. 10.45.
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Fig. 10.44, Motor shapes during optimisation (iteration step: quality).

T?J I

= t
Zl-l— “‘“\//K\r‘lw\r/\\ﬂ\_‘_
i
0 40 80 120 160 200
iteration coumt —

Fig. 10.45. Quality versus iteration counts.
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10.3.2 Pole shape optimisation of a synchronous generator

The aim is to optimise the pole shape of a 3-phase synchronous generator.
The quality function is evaluated by a simplified analytical approach. At
no load of the generator typically the generated voltage is desired to be
sinusoidal, The time dependent sinusoidal output voltage requires a
position dependent sinusoidal distributed flux distribution in the air gap.
With DC field exciting current and a concentrated shaded pole, the
sinusoidal field excitation is reached by influencing the air gap
reluctance. The air gap length 5(g,) is a function of the circumferential
angle ¢, .

Due to symmetry only half a pole pitch is used for the evaluation of
the air gap flux density distribution. The following assumptions were
made:

e the stator of the machine is spotless

saturation of ferromagnetic parts is neglected

s inside the iron parts it should be x4, — 0, ie. flux lines are

perpendicular at the iron boundaries

e the flux lines are approximated by circular arcs

pole flux leakage is neglected
flux density in the interpolar gap is not present.

Fig. 10.46. Geometry and co-ordinate system.

Fig. 10.46 shows the geometry and co-ordinate system of the used
configuration. The pole shape of half a pole pitch is approximated with n
parts of a polygon. Between the sample of the polygon, linear
interpolation of the flux density is applied. The objective variables are the
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y-co-ordinates yj, ..., ¥, of the samples of the polygon. The air gap length
8, > 0 restricts the optimisation problem.

y,<0 with i=1{1)n
With the objective function:

,/Z’B:
A2 s min, (10.42)

P
B, denotes the fundamental of the flux density distribution and the
B, are the harmonics. Determination of the harmonics is performed by a

fast Fourier transformation (FFT). With Ampere's law on the path of
integration as indicated in Fig. 10.46 the flux density of the position of
interest is evaluated with:
Beg 2 | (10.43)
i o 5]
Fig. 10.47 shows the initial and optimised pole shape. The variations
of the pole contour for temporary iteration steps can be taken out from

Fig. 10.48.
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Fig. 10.47. Pole shape and flux density; a) rectangle pole and b) optimised pole
shape.
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Table 10.4. Quality function during optimisation.

a) Z©  =3039% e ZV  =29.62%
b) Z¥  =2804% ) z®  =2726%
c) Z¥  =2508% g 2Z¥  =2459%
d  Z®  =3.53% hy z®  =23.26%

10.3.3 Optimisation of an actuator using a magnetic equivalent
circuit model '

The MEC method and the mentioned combined numerical optimisation

algorithm will be applied for the example. The task is to optimise the

shape of a brushless DC motor. Fig. 10.50 shows the initial shape of the

electromagnetic device. The used complete equivalent magnetic circuit

can be taken out of the introductory section about numerical techniques.

The armature winding is fixed to closed stator slots and the rotor is
axially assembled out of permanent magnet rings. The magnet material
used is a plastic bonded NdFeB grade (MQ1). The objective is to
minimise the material costs of the construction under the assumption of
the same torque production as the initial construction. Objective variables
can be taken from Fig. 10.49.

Material costs are estimated and set to 0.7 US$/kg for the
lamination, 4.1 US$/kg for the used copper volume of the armature
winding and 110 US§M/kg for the used magnet material. The resulting
shape of the motor can be seen in Fig. 10.51.

Using a quality function with K as the sum of all material costs, the
start value of quality is approximately 42 USS$. After the optimisation, the
overall material costs decreases to 11 US$. Fig. 10.51 shows the
reduction of the cost intensive permanent magnet volume, Due to the
expensive armature winding compared to the lamination cost, wide stator
teeth can be noticed. Maximum flux density of 1,04 T is enumerated in
the teeth.

Fig. 10.49, Objective variables.
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Fig. 10.50. Initial geometry.
1 permanent magnet; 2 stator yoke; 3 area of armature winding; 4 shaft.

lp,= 37.3 mm

Fig. 10.51. Optimised shape of the DC actuator.

10.3.4 Design of a lifting magnet

FEM method and the numerical optimisation algorithms are applied to
the shape optimisation of a lifting magnet. The objective is the reduction
of the weight of the device at constant lifting force. There are no
additional geometrical constraints. The problem is formulated with 10
free parameters to be optimised as indicated in Fig. 10.52.

Obviously, the problem has to be defined as a non-linear
magneto-static field problem. During optimisation an accuracy of at least
1% was required for the FEM field calculation. The size of the mesh was
restricted to 4000 elements. The optimisation method used was the
evolution strategy (4/3, 12).
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Fig. 10.52. Lifting magnet with initial proportions. Arrows indicate the
admissible variation of design parameters.

This method offers a compromise between reliability and
performance. A plus-strategy with a smaller number of children and
parents would result in faster convergence. The initial and adaptive
generated final mesh for the FEM calculation can be seen in Fig. 10.53.
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Fig. 10.53. a) Initial and b) adaptive generated final mesh for the optimised
geometry.

The resulting field plot of the optimised lifting magnet is shown in
Fig. 10.54. The optimisation resulted in a reduction of weight of
approximately 6% in comparison to the initial geometry.

The dependence of step length on the iteration steps is illustrated in
Fig. 10.55. It serves as convergence and stopping criterion. About 40
iterations, each involving 12 objective function evaluations, seem to be
sufficient for an geometrical accuracy of 1 mm. Fig. 10.55 shows that the
most significant reduction in weight is achieved during the first 30
iterations. The improvement in the following iterations is less than 1%.
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Fig. 10.55. Step length and weight of the lifting magnet versus iteration count
during optimisation.
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A postscript on software development at Leuven

Without the constant lively enthusiasm for the subjects of field
computations that exists within the research group at Katholicke
Universiteit Leuven it would have been impossible to collect this amount
of knowledge and expertise in such a short time. Here we would like to
present the work that is done within our research group in the frame of
field computations and simulations. This book can serve as some thanks to
such enthusiastic co-workers and partly as a document of their work
during their Ph.D. studies in the electrical engineering department at the
Katholieke Universiteit in Leuven.

A university is a place of education. Besides some particular people,
students are constantly coming to join the group to work scientifically and
are leaving the group to use their acquired knowledge in industry or
elsewhere.

At the beginning of 1996 the enthusiasts, Herbert, Ronny, Uwe,
Johan D., Johan F., Peter, Koen, Geoffrey, Hans and us, started the
development of some special FEM solver and software modules to be
coupled to commercial packages. This development has now grown into
an independent software package for two-dimensional field problems,
including coupled field effects, enhanced force computation, and
automated numerical optimisation, with its own name OLYMPOS-2D.

The most important solvers for two-dimensional field problems are
present in this package, such as static, time-harmonic, in-plane and
transient (magnetic, thermal, electric, mechanical strain/stress,...). Today
the group manages more than half a million lines of software code.
Various developed programs, post-processor tools and graphical interfaces
support the single FEM solver. Parameterisation tools, scripting, graphical
coil definition modules back up users such as scientific visitors and
students. Further software development and scientific studies will focus
on the coupling of the effects of the different field types, the automated
optimisation of entire electromagnetic systems, investigations in the
representation of non-linear materials will of course work towards a three-
dimensional package. Therefore, this book can serve as an intermediate
report of the scientific field computation activities inside the Electrical
Energy group of the Katholieke Universiteit Leuven.
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