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Preface 

This book provides an overview of  numerical field  computational 
methods. Particular attention is paid to the finite  element method (FEM) 
for  the design of  electrical machines and other magnetic devices. 

It is based on the authors' experience in teaching numerical 
techniques to undergraduates, graduates and doctoral students in courses 
at their own and at various international universities, e.g. guest courses at 
COPPE Universidade Federal do Rio de Janeiro (Brazil), Université de 
Batna (Algeria) and the RWTH Aachen (Germany). The numerical 
techniques are introduced to engineers from  industry in an annual Short 
Course  in Magnetics  organised at the Katholieke Universiteit Leuven. 

This book is intended to be the basic reading material for  such 
courses on numerical field  computations as given nowadays at the 
Electrical Energy division in the Electrical Engineering Department of 
the Katholieke Universiteit Leuven and as guest courses at other 
universities. 

The book describes the theoiy and techniques of  modelling and 
simulating electromagnetic devices. While its primary focus  is on the 
techniques applicable to the modelling of  electrical machines and the 
electromechanical energy transducers, it also illustrates the usefulness  of 
knowing the physical background of  the specific  problems. Accordingly, 
the right problem definitions  can be applied and computed results can be 
interpreted and verified  in a proper way. 

Particular attention is paid to the FEM in designing electromagnetic 
devices, such as motors, actuators and transformers.  This means that only 
frequencies  below 10 kHz are considered. Several aspects of  coupled 
fields  are discussed in sections where the physical problem urges 
coupled solutions. The book has been written as a text book for 
undergraduates, graduates and engineers in practice who want to learn 
how to apply the fundamentals  to solve electromagnetic design 
problems. Selected examples to develop skills to define  and solve a field 
problem accurately are given at the end of  this book. In parallel with the 
text for  this book, an in-house software  package for  two dimensional and 
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axisymmetrical FEM problems is developed to investigate the various 
aspects of  the numerical field  computation and their usefulness. 

Without the support of  various people, this book would not appear 
in this shape. In the first  instance we should like to thank especially Dr. 
U. Pahner for  his contributions to the optimisation chapter. The texts 
from  section 7.3.1 to 7.3.3 are slightly adapted parts of  his excellent 
Ph.D. thesis. 

The authors are grateful  to all their Ph.D. students currently 
working in the area of  field  computations for  their suggestions, criticism 
and active participation collecting this course material. Some topics 
introduced in this book are directly related to the cunent research work 
in the division ESAT/ELEN. 

As a guest professor  and regular visitor to our division, Prof  E.M. 
Freeman contributed to general ideas, which we have developed over the 
years as well. 

It has been a pleasure working with Lance Sucharov and Clare 
Garcia of  WIT Press. 

Kay Hameyer and Ronnie Belmans 
March 1999, Leuven 
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An original design and the step by step optimisation of  physical technical 
devices is in practice often  a trial and error process. During the design 
and construction of  a device several expensive prototypes have to be 
built to monitor and check the mathematical approximations and the 
physical reality. This procedure is time consuming and expensive. 
Successful  industrial developments demand shorter cycle times to fix  or 
improve the economical competition of  particular companies. To 
effectively  compete in the market place nowadays, developed products of 
higher quality, improved efficiency  and better functionality  are 
recommended, leading to devices with very complex geometries. 
Furthermore, custom designs are becoming very important. The added 
value of  standard massproduction devices is far  lower. To solve the 
techno-economical demands, the idea is to replace the expensive 
prototyping by numerical simulations. 

If  an appropriate simulation model is found,  various operating 
points can be simulated on a computer. Even the behaviour of  the device 
for  hazardous situations that cannot be measured inside a laboratory and 
the use of  arbitrary even future  materials can be studied. The appropriate 
choice of  a calculation technique for  an electromagnetic device is always 
closely linked to the complexity of  the problem. 

To develop a technical product, parasitic effects  such as: 
• ferromagnetic  saturation 
• increased leakage flux 
• high operating temperatures 
• irreversible flux  losses by using permanent magnet materials at 

elevated temperatures 
• coupling between different  effects  such as thermal-magnetic-

mechanical-flow  field  problems and 
• induced currents due to motion effects 

have to be considered in the calculations accounting for  sufficient 
accuracy. In devices with complex geometries, those effects  can not be 
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treated by a classical analytical approach. Results whh a high accuracy 
are required to predict the behaviour of  the technical product In this case 
the simulation of  the electromagnetic fields  and their effects  by 
numerical models is suitable as an appropriate engineering tool. Using 
computer models and the appropriate numerical algorithms solves the 
physical problem. The numerical method has to fulfil  specified  demands 
such as: 

• reliability 
• robustness 
• application range 
• accuracy 
• performance. 
To see where the numerical simulation finds  its place in the analysis 

of  technical devices, Fig. 1,1 shows the links between the real technical 
device, the classical physical theory and the numerical simulation. This 
figure  makes obvious that the numerical simulation is a connecting 
element between reality, measurements, and theoretical predictions. As a 
consequence, all numerical computations represent realistic activities in a 
Active laboratory. This means that simulation results should be 
theoretically measurable in practice. The numerical simulation is in fact 
an experiment performed  on the computer as a fictitious  laboratoiy, 
where the engineer is using numerical tools to perform  the experiments 
instead of  measurement devices such as current, voltage, power, 
temperature and force  meters. 

Fig. 1.1, Theoiy, experiment and simulation. 
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The numerical simulation influences  the analytical theory where 
sometimes rough approximations or constants are used to consider 
physical effects  such as ferromagnetic  saturation or hysteresis. The 
verification  of  numerical solutions and results obtained by the analytical 
theory can lead to improved analytical models and vice versa. Both 
numerical simulation and analytical theory help to understand the 
physical reality and to improve technical predictions. 

1.1 Numerical solution process 

In Fig. 1.2, the solution process for  a system of  partial differential 
equations is outlined. 

Fig, 1.2. Solution process for  a system of  partial differential  equations. 

The fields  are described by differential  equations. Assumptions 
concerning boundary conditions, material properties such as isotropy, 
dependencies in time, etc. have to be made before  a computation of  a 
field  can be performed.  For example in magneto-static fields,  the time 
derivative is assumed to be zero and therefore  no induced currents can be 
considered. 

The choice of  the potentials is based on these simplifications.  For 
each problem type, the choice of  an appropriate potential is different. 
The choice of  a gauge is necessary to obtain a regular system of 
equations. Using the finite  element method, the choice of  the gauge also 
determines the choice of  the element type. However, the user of  a CAD 
program package that simulates magnetic, electric or thermal fields  is 
usually not involved in choosing for  such basic numerical properties. 

The numerical method to solve the partial differential  equation is 
understood as a solution criterion. 
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The appropriate solution method depends on the type of  equation, 
such as parabolic, hyperbolic or elliptic. 

For example, the choice of  the elements for  the finite  element 
method depends on the differential  equation, the potential formulation, 
and the solution method. 

In a two-dimensional magnetostatic problem the unknowns are node 
potentials. Here, the magnetic vector potential is chosen because the 
nodal unknowns have only a single component A2. In this two-
dimensional field  problem, the Coulomb gauge is satisfied  automatically. 

The choice of  method for  solving a system of  linear equations is 
dependent of  the differential  problem and its formulation.  For example 
the magneto-static problem is an elliptic differential  problem. The 
Laplace operator is symmetrically adjoint and positive definite.  A system 
of  equations with such properties can be solved by a conjugate gradient 
method. 

To focus  on the active parts 
performed  by an design engineer, in 
principle, field  computation is 
performed  in three major steps: pre-
processing, processing and post-
processing. Fig. 1.3 shows a typical 
pattern for  the FEM approach. The 
first  step consists of  the definition  of 
the geometry of  the electromagnetic 
device. Material properties, electrical 
current densities and boundary 
conditions are defined.  All the 
activities have to be performed  by the 
design engineer. Therefore,  the pre-
processing is time consuming. The 
estimated time expenditure for  a two-
dimensional problem is given in 
Fig. 1.3. The processing, i.e. the 

solution of  a veiy large system of  equations is automatically done in the 
second step. Only parameters to control the solution process have to be 
defined  by the design engineer. In the last part of  the FEM procedure, the 
interesting field  quantities are computed from  the solution out of  the 
processing. If  the geometrical data can be parameterised, the pre- and 
post-processing can be automated as well. This represents an important 
prerequisite for  the possibility of  the combination of  field  computation 
and numerical optimisation. 

processing 
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Fig. 1.3. Solution processes durmg 
a field  computation session. 
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For designing and constructing electromagnetic devices an accurate 
knowledge of  the field  quantities inside the magnetic circuit is necessary. 
In many cases the air gap is of  particular importance (e.g. motors, 
switches, relays, contactors, actuators). Here the conversion from 
electrical to mechanical energy and vice versa takes place. In the air gap 
the field  quantities such as flux  density and field  strength have to be 
calculated very accurately in order to be able correctly to asses the 
operational behaviour of  the device. 

Although Maxwell equations have been known for  more than a 
centuiy, in the past the task in calculating a magnetic circuit was to find 
as many assumptions and simplifications  as possible. Then, results could 
be obtained with rather low numerical efforts.  Using this approach, only 
devices or problems with a strongly simplified  geometry could be 
studied. It was a design following  simple rules, found  empirically. 
Physical effects  were considered by correction factors  applied to the 
existing rules. In the following  period of  time this design through rules 
has changed into another design philosophy: design analysis. Here, 
computer models were used to solve the field  problem. Analysis means 
the treatment of  the field  problem by numerical simulation. 

With the ongoing developments in computer hard- and soffware  and 
numerical research, difficulties  concerning computational costs and 
numerical problems are continuously moving to the background. Today, 
efficient  numerical solutions can be obtained for  a wide range of 
problems beyond the scope of  analytical methods. In particular the 
limitations imposed by the analytical methods, their restrictions to 
homogeneous, linear and steady state problems can be overcome using 
numerical methods. 

In general, the procedure for  analysing an electromagnetic device 
can be divided into three steps: 

• pre-processing 
• processing and 
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Fig. 2.1. Field analysis steps. 

• the post-processing. 
In the first  step, the field  problem is defined  and prepared to be 

solved. The second step delivers the numerical solution of  the physical 
problem. During the post-processing, the obtained solution is prepared to 
calculate the required field  quantities or to evaluate forces  and other 
macroscopic quantities. This threefold  approach of  defining,  solving and 
evaluating is typical for  every analysis procedure, numerical or 
analytical. The different  techniques, data structures or algorithms used in 
the individual steps, influence  and/or limit the overall procedure during 
the analysis of  a field  problem (Fig. 2.1). 

To define  a field  problem, the input data describing the geometry of 
the domain of  interest, the material representation and the boundary 
conditions are always required. Even with enhanced CAD drawing 
techniques, most of  the analysis time will have to be spent on the pre-
processing. Given error bounds will support a desired accuracy of  the 
solution. Often,  the user can not influence  this step. During the post-
processing, the solution must be prepared to study the local field  effects. 
The post-processing represents an open-ended process, because the user 
of  the analysis can evaluate the calculated solution in various ways for 
different  aspects. 



www.manaraa.com

The methods and algorithms used in the single steps of  the overall 
procedure can form  an efficient  analysis or design tool and determine the 
quality of  the results of  the analysis. For example a use of  particular 
internal data structure can enable very quick search routines to obtain an 
efficient,  fast  and automated discretisation with parameterised 
geometries and materials. The various possible coupling mechanisms of 
different  fields,  circuit equations, methods such as FEM/BEM 
combinations, motion term or geometries yield into an accurate 
approximation of  a realistic physical problem. The properties of  the 
coefficient  matrix decide which equation solver or algorithms must be 
used to solve the problem. 

2.1 Finite element based CAD systems 

CAD systems to treat two-dimensional field  problems are in common use 
nowadays. Developments in hard- and software  have made it possible to 
realise user-friendly  and reliable systems running on different  hardware 
platforms  such as UNIX and on PCs. Commercially available software  is 
oriented mainly to operate inside a PC Windows™ environment. A 
reason for  this can be seen in the price/performance  development of  the 
PC market in the past years. Unix workstations remain more expensive 
when compared to the PC competitor and the performance  of  standard 
PCs is already comparable to UNIX workstations. A growing demand on 
PC-CAD systems for  magnetics can be noticed. This tendency in the 
market can identify  several reasons. The lifetime  of  hard- and software  is 
decreasing. Having user-friendly  software  available enables the user to 
change the CAD system without large training efforts  more quickly. It 
turns out that software  systems are becoming consumables. Observing 
recent years, the CAD software  price developments have been rather 
calm, but the performance  characteristics of  the software,  such as solver 
speed and user-friendliness,  are rapidly increasing. Using commercial 
software  can solve more and more complicated problems: 

• complex geometries in 2D/3D 
• complexity of  the analysis increases 
• external circuits including capacitances and inductivities, voltage 

and current driven 
• motion effects 
• enhanced force  computation, local field  quantities 
• enhanced mesh adaptation 
• coupled field  analysis. 
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2.1.1 Components and modules 
A regular CAD system for  magnetics includes various components to be 
able to solve the field  problem in an appropriate way. To handle the 
problem in the three steps of  pre-processing, solving and post-processing, 
modules such as: 

• graphical drawing tool to generate the geometry 
• mesh generator 
• material library manager and modeller 
• problem definition  tool 
• different  solver modules for  the various field  types and 

formulations 
• post-processor tools 
• visualisation modules to evaluate the solution and 
• file  manager tool for  the data transfer  to other software  modules 

are pre-requisites of  a FEM CAD system. User interfaces  are 
recommended to have a maximum of  process control for  a minimum of 
efforts  during the analysis. To obtain a high quality field  analysis tool, 
the user-interfaces  must allow sufficient  interaction of  the user with the 
process steps. The influence  of  the interface  on the mesh, problem 
formulation  and solution can be taken from  Fig. 2.2. An open data base 
interface  allows further  manipulations of  the data by other software 
products, for  example to generate different  graphical representations of 
the solution or to analyse FEM models generated by another software 
package. 

user-interface user-interface user-intcrfacc 

f 

prc-processor equation solver post-processor 

Fig. 2.2. Process control of  a field  analysis. 
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2.1.2 Graphical drawing tool for  problem definition 
To be able to model the technical device to be studied by field  analysis, a 
graphical interface  is necessary to generate a technical drawing. This 
user-interface  must support primitives such as lines, arcs, circles and 
points to describe the geometry properly. If  different  software  packages 
are used, interfaces  to the other software  should be available (IDEAS, 
PATRAN, AutoCAD DXF, ...). 

Using the generated technical drawing, boundary conditions are set 
and domains with different  material properties are defined.  Various 
labels represent the chosen material of  particular domains and set edges 
of  the geometry to characterise the given boundary conditions there. 
Commercial program packages are supporting libraries with various 
grades of  non-linear ferromagnetic  and hardmagnetic materials (Fig.2.3). 
To define  own materials, special software  modules can be used to 
include such data. The defined  data can be controlled visually after  their 
definition. 

Fig. 2.3. Typical material representations: a) non-linear ferromagnetic  and b) 
permanent magnet material characteristics. 

If  semi-automated mesh generators are used, mesh size definitions 
have to be given in this step of  problem preparation. Therefore,  lines, 
circles and arcs are selected and subdivided into several parts to form 
edges of  the finite  elements to be generated in the next step, 

2.1.3 Mesh generation in general 
A mesh generation module must supply a numerical discretisation of 
interior regions by the finite  elements. Standard triangular elements are 
in common use iri two-dimensional models (Fig. 2.4) and tetrahedrons 
are regularly used to model three-dimensional field  problems. 
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Fig. 2,4. Domain of  interest of  two conductors in air and the two-dimensional 
FEM mesh. 

The mesh generation is automated with a minimum of  user 
interaction. Several a-priori criteria can be employed to guarantee a 
certain quality of  the discretisation. The solution accuracy is strongly 
dependent on this mesh. If  the strategy of  an automated mesh adaptation 
is supported to enhance the quality of  the discretisation in successive 
computation steps, only a minimum discretisation is recommended in the 
first  mesh. More details can be found  in the section on adaptive mesh 
refinement. 

The generation of  three-dimensional FEM models is extremely time 
consuming. Two different  strategies can be followed: 

• mesh extrusion (Fig. 2.5) 
• solid modelling (Fig. 2.8). 
The extrusion approach works with two-dimensional meshes 

extruded in the third direction. Rotations of  axis-symmetrical geometries 
are possible to form  the 3D model as well. A disadvantage is that not 
every contour can be modelled realistically. For example, conical 
surfaces  represent a problem (Fig. 2.7). If  the scalar potential formulation 
is used, excitation coils and windings can be introduced into the model in 
a following  step (Fig. 2.6). 

A solid modeller works mainly in two steps. First the surface  of  the 
geometry is discretised, and after  this the volume is meshed in a second 
step. Various suggestions to generate solid meshes can be found  in the 
literature (Tsukerman & Plaks 
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Fig. 2.5. Basic idea of  the extrusion technique. 

feiTomagnetic  y o k e 

excitadon coil 

conducting wire 

back iron 

Fig. 2.6. A three-dimensional model of  a wire heating device. 

Fig. 2.7. Comparison of  a) extrusion based and b) solid modelling of  a claw-pole 
generator (source: lEM RWTH-Aachen). 
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Fig. 2.8. Solid modelled 3D mesh of  the rotor of  a claw-pole generator. 
(Source: IBM RWTH-Aachen) 

After  the mesh generation the field  problem is defined  and can be 
solved by the equation solver. This is mainly in commercial software 
packages performed  without or with a minimum of  user interactivity. The 
appropriate solver has to be chosen. 

2.1.4 Post-processor tools 
Several tools are recommended to evaluate the field  solution. The 
potential solution has to be transformed  into physical quantities such as 
flux  density, field  strength or forces.  Therefore,  numerical manipulations 
of  the potential are necessary. The post-processor module must consist of 
a calculator to perform  such manipulations. 

To be able to evaluate the solution, various graphical 
representations of  the solution can be of  interest: 

• colour plots of  selected quantities 
• plots of  the lines of  constant potential, flux  plots 
• diagrams showing quantities along defined  contours. 
To extract parameters out of  the solution, a post-processor 

calculator can be used as well. 

2.2 Design strategies 

The development and design of  electromagnetic devices reflects  a 
complex process. Originating from  an initial idea, the construction runs 
through different  phases. This procedure is terminated when a final 
concept is selected and considered to be designed, subject to various 
targets and constraints. As a whole, the task of  the design engineer is to 
find  solutions for  technical problems. On the way to the latter physical 
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and technical product, certain aspects have to be considered. 
Technological and material-dependent questions as well as cost 
effectiveness  and ecological constraints have to be taken Into 
consideration. A cut-set of  the mentioned boundary conditions controls 
the feasibility  of  the final  design. With emphasis on electromagnetic 
devices. Fig. 2.9 shows a simplified  scheme of  interdependencies of 
targets and constraints, This simple patterri clarifies  that the design 
process is strongly dependent on the experience of  the engineer and 
reflects  an optimisation procedure with often  contradictory aims. 
Therefore,  the necessity of  a systematic and strategic design with 
engineering tools is obvious. Here, solution strategies using modem 
numerical methods to accelerate and ensure a high-standard technical 
product in an overall design process are discussed. 

environmental 
influence 

malcrmi 7 manufacturing 
conditions 

I y T T T V - 4 magnetic 
el. circuit \ j circuit 

desired design \ ^ assemblage 

Fig. 2.9. Interdependencies in the design of  electromagnetic devices. 

Designing electromagnetic devices includes the calculation and 
analysis of  the electromagnetic field  distribution. From the local field 
quantities forces,  torques and losses can be derived to make predictions 
concerning global quantities such as converted power and efficiency.  For 
complicated geometries analytical field  solutions are non-existent or veiy 
hard to obtain. Using numerical field  computation techniques of  a 
general application range, the microscopic field  solution leads via a 
lumped parameter approach to the desired time-dependent behaviour of 
the device (Fig. 2.10). 

The microscopic field  solution itself  delivers important knowledge 
regarding the material utilisation. Such results offer  the opportunity to 
reduce material, weight and the costs of  the latter product. To accelerate 
development, extensive field  computations with various types of  material 
can be performed  avoiding expensive prototyping. It is even possible to 
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predict system behaviour before  new materials are actually available on 
the market. With this knowledge, the design engineer can order special 
material to be developed at the material manufacturer  or, vice versa, if 
the material supplier uses such numerical tools he can suggest and offer 
the right choice of  material for  a particular device. 

flux d i s l K b u L i o n . 
losses, c u n c n l s 

Fig. 2.10. Analysis scheme using the finite  element method. 

Lumped parameter models are essential for  the development of 
control strategies for  electromechanical devices such as electrical drive 
systems. To be able to perform  real time control schemes, lumped 
parameter models are used to form  an observer control. Here, very 
accurate field  computations are recommended to determine the 
concentrated elements of  such models. 

A q-nis 

Fig. 2. n . FENÍ model of  the end-winding area to compute the leakage reactance 
X^̂ g of  a servomotor with d-q model in vector diagram representation. 
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For example, the computation of  the leakage reactance of  electrical 
motors can be performed  using a three-dimensional FEM model (Fig. 
2,11). The knowledge of  this reactance is essential for  the optimum 
control of  a permanent magnet-excited servomotor. The vector diagram 
in Fig. 2.11 demonstrates the large influence  of  the leakage reactance 
X ĵg on the optimum control angle of  this permanent magnet machine. 

2.2.1 Knowledge-based design 
The main aspect of  the structured development of  novel technical 
products is analysis followed  by a detailed synthesis. Analysing means 
obtaining information  on partial functions  of  the desired overall function, 
by investigating single elements and their mutual interactions. In this way 
overall links between various principles of  the partial functions  are 
found. 

In Fig. 2.12, a structured and knowledge-based development 
process is illustrated in a simplified  scheme. In this example, the final 
technical product has to be designed, able to fulfil  three partial functions. 
Those individual functions  to be connected to the overall task of  the 
product are a linear motion, a continuous rotation and some reverse 
operation. After  the analysis phase, in the synthesis step different 
physical working principles are selected and evaluated. The selection 
process is governed by simple qualitative rules. In this way the partial 
functions  are evaluated with regard to their feasibility  with respect to the 
given constraints and limitations (Fig. 2.12). In this step, the feasible 
principles are ranked qualitatively by weighted constraints and 
limitations. 

analysis 

construction 

selection consultation 

Fig. 2.12. Knowledge-based and structured design. 
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The process of  synthesis (Fig. 2.13) leads from  qualitative decisions 
to quantitative statements in a following  design step. The whole process 
is accompanied by the consultation of  experts and expert knowledge 
(Fig. 2.12). A detailed investigation and ranking, i.e. the precise 
calculation of  the operating conditions, leads by a comparison to the final 
technical product. In this loop of  iterations, between validation and the 
performance  of  detailed predictions of  qualified  concepts, a numerical 
optimisation combined with field  computation methods is found  as an 
important and powerfial  engineering tool for  the design of 
electromagnetic devices. 

The quantification  and ranking of  the working principles is 
governed by the choice of  materials or other components such as 
electronic circuits. Their interdependency on the studied principle can be 
distinguished into an object and a rule world. The various, for  instance 
ferromagnetic,  permanent magnet, conductive or dielectric materials, and 
respectively components such as the electronic hardware have, 
considered inside an object world, particular properties and 
characteristics. To employ such object properties in order to obtain a 
physical working principle fulfilling  a desired function,  appropriate rules 
determining the function  of  the object have to be considered. In both 
object and rule world, constraints are found  to govern a decision to 
consider the principle further  in the ranking or to reject it. Numerical 
techniques can help to employ the rules accurately to the studied object. 

electronic 
hardware 

components 

electronic 
circuits 

material 

\ I / 
comblnilloiu of 

principles 

magnetic 
circuit 

selection criteria 

quatillcd combinations 

compirtion 

Fig, 2.13. Process of  synthesis. 
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The notation and basic laws of  the electric and magnetic fields  are 
explained in this section. It is not intended to present the complete 
electromagnetic field  theory. Only a limited set is given, necessary to 
understand the types of  physical problems treated in this book, enabling 
the modelling of  technical devices to be studied by numerical simulations 
of  such fields.  In this book, fields  used for  energy conversion are 
discussed only. The high frequency  fields  that, except those for 
microwave heating, are used to transfer  information  are not considered. 

3.1 Quasi stationary fields 

In general, two classes of  electromagnetic fields  can be distinguished, 
the time independent static and time varying fields  (Fig. 3.1). They can 
be scalar and vector fields.  A typical scalar field  for  example is the 
electrostatic potential distribution q>ix,y,z) between charged electrodes 

eleclromagnelic fields 

sialic d!  St  = ^ 

cleclric magnetic cuirenl 
E H flow  J 

stationaiy 

non-slalic d! 

slow varying 

quasi-slalic 

electric magnetic current 
E H flow  J 

quasi-slationaiy 

fast  varying 

quBsi-
stationaiy 

current 
flow  J 

electro-
magnetic 
waves 

non-
stationary 

Fig, 3,1. Classification  of  electromagnetic fields. 
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and the magnetic field  strength K{x,y,z)',  surrounding a current 
carrying conductor is a typical vector field.  In the group of  slow varying 
fields  we can find  the same types. 

We have to distinguish between the slow and fast  varying electrical 
current flow  field  with regard to the geometrical dimensions of  the 
current carrying conductor. The slow varying fields  are understood to be 
fields  not leading to current redistributions. This means that there are no 
eddy current effects  as the dimensions of  the current carrying conductor 
are smaller than the penetration depth of  the field.  The current at those 
frequencies  is distributed as in the DC case, uniformly  over the whole 
surface  of  the conductor. Eddy current effects  are considered in the fields 
with fast  varying time dependency, due to the low firequency  treated as 
quasi-stationary. High fi-equency  fields  as focussed  in antenna problems, 
leading to the electromagnetic waves, are not considered in this book. 

Most of  the physical issues in electrical energy engineering can be 
described by quasi-static phenomena. Slowly varying and periodic fields 
up to 10 kHz are considered to be quasi-stationary. Electrical energy 
devices such as electrical motors and actuators, induction furnaces  and 
high-voltage transmission lines are operated at low frequency. 
Exceptions are microwave devices for  electroheat applications, where 
inherently the displacement current is not negligible. 

Typical examples of  quasi-static electromagnetic fields  are the 
fields  excited by coils in rotating electrical machines, transformers  and 
inductors. Inside these conductors the displacement current is negligible 
and the magnetic field  H outside the coil is exclusively excited by the 
free  current density J . For those quasi-static fields,  AMPERE'S law is 
applicable (Binns et al.'^). 

V x H = J (3.1) 
To decide whether the displacement current can be neglected or not, 

depends on the wavelength X of  the problem considered in the frequency 
domain. If  it is large, when compared to the physical dimensions of  the 
problem / , the displacement current is negligible. To consider this 
phenomenon in the time domain, the rise time Ta of  a step flinction  must 
be large inside the problem compared to the transit time / / v. Field 
problems are quasi-static if  eq.(3.2) is valid. 

r . » i / v p j j 
X»l 

In general »5.,.10//v .respectively A w 5... 10/is sufficient. 
For this class of  problem, the interesting fields  vary slowly and can 

be periodic. Then three categories of  problems are distinguished: 



www.manaraa.com

• static 
• slowly vaiying transient 
• time-harmonic eddy current. 
In time-harmonic problems sinusoidal varying field  quantities are 

assumed. In theoiy, a time-harmonic solution is only valid for  a linear 
system as a sinusoidal excitation does not yield a single frequency 
response in the non-linear case. 

3.2 Boundary value problem 

Many scientific  engineering or physical problems lead to boundary value 
problems. The describing differential  equations have to be solved in a 
volume satisfying  particular conditions on its boundary F (Fig. 3.2). 
Therefore,  the definition  of  a boundary value problem is necessary and 
evident. The proper definition  of  a numerical model is important to 
obtain correct results and assumes a good understanding of  the 
underlying physical background of  the field  problem. 

© 
Fig. 3.2. Boundary value problem. 

For obtaining the solution of  the boundary value problem, it can be 
formulated  in the form: 

Find  a function  u^V,  so that for  all  v ^V 
a(«,v) = / ( v ) . (3.3) 

The boundary value problem is defined  by a differential  equation 
a{u,v)  feasible  in the volume O. w is the exact solution of  the problem 
that has to be found. 

K is a set of  continuously differentiable  functions  in Q with for 
example v=0 at the boundary F. The type of  functions  v and differential 
equation that can be employed is subject to the method or approximation 
used to solve the field  problem. 

Assuming that the appropriate differential  equation for  a particular 
physical problem is known, the definition  of  the numerical model is 
dependent on the correct choice of  boundary conditions. 
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If  it is considered that the desired field  solution is a local potential 
distribution u = in a local co-ordinate system and time depending 

X = (jCi, , different  types are possible and can be defined. 

3.2.1 Initial and boundary conditions 
Boundary conditions have to be applied to a field  problem to ensure a 
well posed problem with a unique solution. Particular attention has to be 
paid to the Dirichlet and Neumann boundary conditions. Applying these 
boundaries in an appropriate way reduces the size of  the field  problem 
significantly.  On the one hand, therefore,  the accuracy of  the solution can 
be improved with the same computational expenses; on the other hand an 
enlarged domain can be studied resulting in the same solution accuracy. 

Mainly fmite  element program packages are limited in the number 
of  elements to approximate the geometry of  the problem or the 
computational efforts  must be limited in order to obtain acceptable 
computation times. Therefore,  the correct and appropriate application of 
the boundary conditions is the key to defining  field  problems and to 
allow an accurate solution in an efficient  way. 
3.2.1.1 Starting conditions When a differential  problem covers the time 
domain, the starting conditions are quantities valid at simulation start-
time, for  example the velocity, flux  couplings with windings in electrical 
machines, field  exciting currents or voltages that have to be set and 
defined  in order to find  the solution of  a transient problem formulation. 

3.2.1.2 Dirichlet boundary condition A Dirichlet boundaiy condition 
sets the unknown function  to a known function  on the boundary of  the 
differential  problem. 

(^x)  = g{x)  = const. (3.4) 
Fig. 3.4 shows in a typical example the application of  the Dirichlet 

boundary condition of  an electromagnetic problem. A ferromagnetic 
circuit is shown consisting of  a U-shaped permanent magnet, an air gap 
and ferromagnetic  back iron. Lines of  constant vector potential represent 
the flux  lines. Physically, the field  is assumed to be zero at a sufficiently 
large distance firom  the magnetic circuit. Therefore,  a Dirichlet boundary 
condition, the potential set to zero, is applied at the entire boundary of 
the problem. Due to eq.(3.4) it is impossible that flux  lines can cross the 
boundary T.  Fig. 3.4b shows the potential lines of  an electrostatic field 
with Dirichlet boundary. Here, the potential distribution excited by the 
charged plates of  a capacitor is computed. 
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= 0 = const. 

a) 

c) 

b) 

d) 

(¡>{x)  = 0 = const. 

f) 

Fig. 3.3. Dirichlet boundary condition applied to the FEM model of  an electrical 
machine, a) Mesh of  the model accounting for  flux  relief,  b) the flux  lines, c) the 

mesh neglecting the flux  relieve of  the machine, d) its flux  plot, e) the mesh 
applying the Kelvin transformation,  f)  its flux  plot. 
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The Dirichlet boundary is an essential boundary condition as it does 
not characterise the space K . It is sometimes called the boundary 
condition of  first  kind. 

Fig. 3.4. Dirichlet boundary condition a) for  an electromagnetic and b) for  an 
electrostatic problem. 

For the analyst of  a field  problem, a crucial question is how far 
away the Dirichlet boundary condition has to be applied from  the field 
exciting sources to restrict the field-domain  on the one hand and to have 
an accurate overall solution of  the near and far  fields  respectively on the 
other hand. When analysing electromagnetic fields  in the presence of 
ferromagnetic  material and small air gaps, such as in electrical machines, 
an outer diameter of  roughly 20% above the characteristic diameter of 
the device can be applied to compute the field  inside the device 
accurately (Fig. 3.3a), Flux lines can not pass the Dirichlet boundary. If 
the flux  relief  inside a ferromagnetic  core due to saturation can be 
neglected, the outer diameter of  the back iron yoke of  electrical machines 
can be represented by the Dirichlet boundary condition (Fig. 3.3c). If  the 
flux  outside the machine yoke can be neglected, the number of  elements 
in the numerical model and thus the computation time, decreases. 

If  the far  field  is analysed, a diameter of  up to 5 or 6 times the 
characteristic dimensions of  the device should be used or special 
transformations,  such as the Kelvin-transformation,  an open boundary 
condition (Fig. 3.3e/f),  can be employed to terminate the field  in the 
transformed  infinite  distance. 

3.2.1.3 Neumann boundary condition The next important boundary 
condition is the Neumann boundary condition. Here, the known value of 
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the derivative of  the unknown function  in the normal direction of  the 
boundary P is prescribed. 

Mx)  , . 
= g(;c) = const. 

OJ 
(3.5) 

If  the derivative in normal direction is constant, lines of  constant 
potential can pass the outer boundary F of  the studied domain Q. 

The most important property of  this type of  boundary condition is 
that by knowing symmetries of  the field,  and applying the Neumann 
boundaries there, the numerical model can be reduced to obtain the same 
solution of  the problem. In this way, the problem size, the time to prepare 
the field  problem and the computational efforts  can be reduced 
significantly.  On the other hand, if  less than the complete geometry has 
to be defined  and discretised, a higher accuracy is achievable for  the 
overall solution of  the problem without extra effort.  Therefore,  particular 
attention must be paid to this boundary condition. 

Fig. 3.5a shows the electromagnetic field  problem with applied 
Neumann boundary at the symmetry line of  the U-shaped permanent 
magnet. This is the only symmetry inside this model and yields a 
problem reduction of  50% with respect to the accuracy of  the problem 
solved in Fig. 3.4. 

The Dirichlet boundary remains of  course at the outer diameter of 
the domain studied. 

<3> 

¿h 

Fig. 3.5. Neumann boundary condition applied at the line of  symmetry. 

By looking at the electrostatic example of  the capacitor in Fig. 3.5, 
an additional symmetry in the potential distribution attracts attention. 
Knowing the potentials at the electrodes of  the capacitance, +100 V at 
one side and -100 V at the other, the Dirichlet boundary with a constant 
potential of  0 Volt can be applied, reducing the problem size a second 
time (Fig. 3.6). 
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^ = Q = const. 

Electromagnetic  fields 

^jf)  = 0 = const. 

tj^x)  = 0 = const. 

Fig. 3.6. Lines of  symmetry with appropriate boundary conditions. 

The Neumann boundary is a natural boundary condition as it does 
not influence  the definition  of  the space F . It is automatically satisfied  at 
the boundary and is sometimes called the boundary condition of  second 
kind (Zienkiewicz & Taylor'^^). 

3.2.1.4 Mixed boundary condition A mixed boundary is a combination 
of  the two last boundary conditions (Dirichlet and Neumann). 

(3.6) 

It is called a Robin or Cauchy boundary condition or boundary 
condition of  the third kind. This type of  boundary condition (Comini et 
al.^') can define  convective boundaries in heat conduction problems. 
There, the heat flux  as function  of  the temperature is prescribed at T and 
the temperature of  the surrounding medium is known. 

3.2.1.5 Binary or periodic boundary conditions Until now only 
symmetries in the geometry were considered to lead to the application of 
the Dirichlet or Neumann boundary conditions. Especially in cylinder 
symmetric devices, such as rotating electrical machines, not only 
symmetries in the geometry but also in the magnetic field  distribution are 
present. Under load conditions the air gap field  of  an electrical machine 
repeats periodically every double pole pitch. At no-load operation, it 
repeats itself  every pole pitch. This field  periodicity can be used to define 
another type of  boundary condition to reduce the size of  the numerical 
model. The local potentials in such boundaries depend on the solution of 
the field  problem and thus inherently occur always in pairs. One 
boundary is computed and the opposite one is linearly linked to this 
value. 
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Fig. 3.7. Periodic boundary condition applied to a 4-poIe induction motor model. 

In Fig. 3.7 the dotted lines indicate the pairs of  the boundaries. 
Obviously, the numerical discretisation of  the model at those boundaries 
must be identical. This type of  periodic boundary condition has the form: 

k</>,ix) + ,/>Xx) = m. (3.7) 
If  m=0 and k equals I or -1 this boundary is called binary boundary 

condition. 

3.2.1.6 Far-field  boundary condition The differential  formulation  of 
the field  equations in the finite  element method has its disadvantages for 
computing open and unbounded physical fields.  The whole field  domain, 
theoretically until infinity  from  the field  sources, must be discretised to 
be able to compute the far  field.  For example, if  the electromagnetic field 
in the vicinity of  a high voltage transmission line is analysed, the air and 
ground have to be modelled. To model the infinity,  a Kelvin-
transformation  can be used to map the infinite  space to a finite  space, 
forcing  their solution to be identical (Fig. 3.8). Using this technique 
reduces the problem size and computational expenses significantly.  Fig. 
3.8 shows the circular domain of  interest of  an electrostatic problem with 
a high voltage tower in its centre. The small circle above is the FEM 
model that approximates the infinite  space. There, one of  the centre 
nodes is set to zero potential whereas the nodes at its circumference  have 
the same potential as the diameter nodes of  the large circle. The lines 
connecting both circles illustrate this link. 
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Fig. 3.8. Open or far-field  boundary condition applied to the simulation of  the 
electromagnetic field  of  a high voltage transmission line. 

3.3 Field equations in partial differential  form 

Every electromagnetic phenomenon can be attributed to the seven basic 
equations, the four  Maxwell equations of  the electro-dynamic and those 
equations of  the materials. The latter can be 

• isotropic or an-isotropic 
• linear or non-linear 
• homogenous or non-homogenous. 

The Maxwell equations are linked by interface  conditions. Together with 
the material equations they form  the complete set of  equations describing 
the fields  completely. 

In this section the Maxwell equations, necessary for  the calculation 
of  electromagnetic fields,  are discussed in their differential  form.  The 
seven equations describe the behaviour of  the electromagnetic field  in 
every point of  a field  domain. All electric and magnetic field  vectors E, 
D, B, H, and J and the space charge density p are in general functions  of 
time and space. The conducting current density can be distinguished by a 
material/field  dependent part Jc and by an impressed and given value Jo . 
It is assumed that the physical properties of  the material permitivity e, 
permeability ^ and conductivity a are independent of  the time. 
Furthermore it is assumed that those quantities are piecewise 
homogenous. 

Three groups of  equations can be distinguished: 
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group 1: 

(i) V x E = ^ 
a 

(3.8) 

(ii) V X H - J + ' ® 
a 

(3.9) 

group 2: 
(iii) V B = 0 (3.10) 
(iv) V D = /9 (3.11) 

group 3 for  isotropic material: 
(V) 
(vi) 

D = eE 
B =/ /H 

(3.12) 
(3.13) 

(vii) J = J „ + J „ = J „ + o E (3.14) 
In the literature published in different  languages different  operators 

are used. Here for  the identity of  the operators ( ViNabla  or del) 
V-X  = divX 

WxX  = cwlX  = rotX 
VK  = grad  X 

is chosen. If  gander are constant in a domain their position in the 
equations can be exchanged for  the geometrical vector operators 
V • and V. If  they are constant in time, their position can be exchanged 
for  the time derivatives d /d t . 

The three groups of  equations are called the main equations, the 
laws of  conservation and the material equations. The first  equation (i), 
eq.(3.8) is known as the law of  Faraday-Lenz with E the electric field 
strength and B the flux  density. Eq. (ii), (3.9) is known as Ampere's law 
with magnetic field  strength H, conducting current density J and D the 
electric flux  density. The term i®/«^, the displacement current density, 
is neglected from  now on, as already argued. Equations (iii), (3.10) and 
(iv), (3.11) describe the constitutive properties of  the magnetic flux 
density and the displacement current with the space charge density p. All 
six field  quantities E, D, H, B, J and p are dependent on each other. 

3.3.1 Motion 
Electric and magnetic fields  form  a unit with phenomena depending on 
the point of  view of  the observer. An observer at rest looking at a moving 
charge perceives an electric field  caused by the charge and an additional 
magnetic field.  The observer moving with the same speed as the charge 
does notices only the electric field.  The field  quantities can be 
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represented in different  co-ordinate systems by different  electric and 
magnetic field  quantities. The Lorentz-transformation  can be used to link 
both resting and moving systems. The field  strength in a resting system 
x,y,z and of  a uniformly  in x-direction moving system x',y',z' can be 
given by: 

E{  = E 
B.: = B 

E'  + 
^ Vl -vVc^ 

(3.15) 

-Jl-v'Jc' 
A distinction is made between the parallel and perpendicular 

direction of  motion. The vectors for  the field  quantities are calculated by: 

E' = 

B' = 

E^-vB, 
= V l - v V c ' 

K 

B'; 
- Vl-vVc^ 

s: 

(3.16) 

(3.17) 

. V l -vVc^ . 
Using the Lorentz transfonnation  for  the charge density p' and the 

vector of  the conducting current density J* for  example for  a particle 
beam moving in the x-direction with 

p-J^v/c' 
P'  = 

I - v V c ^ 
it can be written 

(3.18) 
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J ' = 

J^-vp 

- Jy 

J. 

(3.19) 

In a similar way', the scalar potential cp' and vector potential A' of  a 
moving charge in the x-direction is transformed  by: 

(3.20) , ^-vA 
<P'  = 

Vl-vVc^ 

A' = 
a; 

A' 

A^-v/c^  -p 
V i - v V . 

(3.21) 

In practically all electrical engineering problems of  technical 
importance, observed phenomena concerning motion are slow in an 
electromagnetic sense, when the speed v is compared to the speed of 
light c. A possible exception is a high-energy particle accelerator in 
pulsed-power-technology. Observing an uniformly  moving system x',y',z' 
from  a resting co-ordinate system x,y,2 and assuming v « c , the 
transformation  is simplified  (Schwab "") to: 

E' = E-hvxB 
V . (3-22) 

B' = B - ~ y x E 
c 

Applying the quantities within the appropriate co-ordinate system, 
the Maxwell equations remain valid. The field  equations from  groups 1 
and 2 are Lorenz invariant. The same can be stated for  the forces  on 
charges caused by electric and magnetic fields.  Forces depend on the 
frame  of  reference  and can be of  electric or magnetic origin. The Lorentz 
force  is: 

' The various potentials are introduced in a later section. 
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F = F . , + F ^ = f i E + e ( v x B )  . (3.23) 
In contrast to the Lorentz invariance of  the field  equations, the 

material relation (vii), (3.14) changes for  the moving system and the 
resting observer to: 

J ' = o-(E + vxB) (3.24) 
and respectively for  the resting system with the moving observer using 
J'=J-vp, to: 

J-v/7 = a(E + v x B ) . (3.25) 

3.3.2 Interface  conditions 
Technical devices are constructed using piecewise homogenous 
materials. The boundary of  such materials can be identified  as a surface 
inhomogeneity. To consider this boundary, the associated interface 
conditions for  the electric and magnetic field  are discussed in the 
following  section. 

To derive those interface  conditions, the integral form  of  the 
Maxwell equations is used. 

Table 3.1. Maxwell equations for  quasi-stationary fields. 
differential  form integral form 

(i) VxE = - ^ 
1 dt 

(3.26) 

(ii) VxH = J (3.27) 

(iii) V B = 0 C (3.28) 

(iv) V D = /7 
S 

jDdS  = Q 
s 

(3.29) 

Here, ip is me magnetic iiux, i me conauctea current, ti tie cnarge, l. inoicates 
the contour integral and iS the surface  integral. 

3.3.2.1 Normal component Maxwell equation (iii), (3.28) in integral 
form  is used to derive the interface  conditions at the boundary of 
different  materials for  the normal component (Fig. 3.9). Using 
dS,  = -i/Sj  = ndS  with n the unit vector in normal direction yields: 

Um<fBciS=  |B ,£ iS ,+ fBj i iS ,  = J (B , -B , )n i /S = 0 . (3.30) 
J s s s 
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Fig. 3,9. Interface  between material O and © with different  properties. 

The surface  S  can be of  arbitrary shape and the integral only 
vanishes if  the integrand is zero. This yields the interface  conditions for 
the electromagnetic field.  The components of  the magnetic flux  density B 
are continuous at material boundaries even if  they have different 
ferromagnetic  properties. 

( B , - B , ) n = 0 
or (3.31) 

With respect to the finite  element method, this means that the 
normal component of  the flux  density must be constant at the boundary 
between finite  elements (Fig. 3.10). 

Fig. 3.10. Normal component of  the flux  density at the interface  of  two triangular 
fmite  elements. 

Similar to the normal component of  the magnetic flux  density, the 
normal component of  the displacement current density can be derived. 
Here, Maxwell equation (iv) in integral form  eq.(3.29) is evaluated in the 
same way yielding: 

Hm^D • i/5 = JD, • iiS, + JD, • rfS,  = J(D, - D J n • dS 
s s s s 

= jp-dV  = jdQ=lp,.dS  . 
K V i 

Where p i s the space charge density, V  indicates the volume 
integral and ps =dQ/  dS  the surface  charge density, 
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or (3.33) 

With the presence of  a surface  charge density, the normal 
component of  the displacement current density is discontinuous at the 
interface  of  a material boundary. Without surface  charge density, the 
normal component of  the displacement current density is continuous at 
boundaries. 

Fig. 3.11. Noraial component of  the displacement current density at the interface 
of  two triangular finite  elements. 

To discuss the interface  conditions for  the conducting current 
density J,  the Maxwell equation (ii), eq.(3.27) is considered. With (vi), 
(3.13), the same conditions found  for  the magnetic field  can be applied 
for  the current density as well: 

( J , - J J n = 0 
or (3.34) 

Fig. 3.12. Normal component of  the current density. 

3.3,2.2 Tangential component The interface  conditions valid for  the 
tangential component of  the electrical field  E can be derived from  the 
integral form  of  the first  Maxwell equation (i), (3,26). 
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miierii] bcunduy 

Fig. 3.13. Interface  and path of  integration between material O and 0 with 
different  material properties. 

Applying the path of  integration on the contour drawn in Fig. 3.13 
and counting positive as indicated, yields: 

lim^E • dr  = |E, • i/r, + |E, • dr,  = |(E, - E J t • dr 

' ' (3.35) 

s St 
It is assumed that t/r, = -dti = tcfr  , with t the unit vector in 

tangential direction. With a fmite  B and the surface  integral over B 
vanishes and this yields; 

(E , -£ , ) • ( = 
n.<(E,-E.) = 0 

or 

Fig. 3.14. Continuous tangential component of  the electric field  strength. 

The tangential component of  the electric field  strength is continuous 
at interfaces  of  a boundary with different  material properties. 

Analogous to the electric field  strength and employing the integral 
form  of  Maxwell equation (ii) eq.(3.27) yields: 

lim^H • dr  = JH, • dr,  + J h , • dr^  = |(H. - H J t • dr 
(3.37) 

= lim|rf/  = 0 + | j > . 

Here Jj, is a possible surface  current density. 
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| [ ( H , - H J t - J < , > / r = 0 . (3.38) 
c 

Herewith, the interface  conditions for  the tangential component of 
the magnetic field  strength H can be written by: 

( H , - H J t = 

or 
(3.39) 

Fig. 3.15. Continuous tangential component of  the magnetic field  strength (Jo=0). 

With vanishing surface  current density the tangential component of 
the magnetic field  strength is continuous at interfaces. 
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4 Potentials and formulations 

The Maxwell equations represent the physical properties of  the fields.  To 
solve them, mainly the diiTerential form  of  the equations and 
mathematical functions,  the potentials, satisfying  the Maxwell equations, 
are used. The proper choice of  a potential depends on the type of  field 
problem. Tn this section, the various scalar and vector potentials are 
introduced. 

The electric vector potential for  the displacement current density 
will not be introduced here, because it is only important for  the 
calculation of  fields  in charge-free  and current-free  regions such as 
hollow wave-guides or in surrounding fields  of  antennas. 

Various potential formulations  are possible for  the different  field 
types. Their appropriate definition  ensures the accurate transition of  the 
field  problem between continuous and discrete space. 

Using these artificial  field  quantities reduces the number of 
differential  equations. Considering a problem described by n differential 
equations, a potential is chosen in such a way that one of  the differential 
equations is fulfilled.  This potential is substituted in all other differential 
equations, the resulting system of  differential  equations reduces to n-J 
equations. It is distinguished between magnetic and electric vector 
respectively scalar potentials: 

Table 4.1. Definition  of  the potentials. 

potentials 
scalar vector 

electric dK. J = VxT 
E = -VK a 

magnetic H = T - V ( i B = VxA 
H = -V(i 
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4.1 Magnetic vector potential 

By using the vector identity 
V ( V x A ) = 0 (4.1) 

and applying eq.(iii), (3.10), introduces the magnetic vector potential A. 
The magnetic flux  density is derived as the curl  of  another vector field: 

B - V x A . (4.2) 
The magnetic vector potential is suitable in regions with and without 

conducting currents. The vector field  A is assigned right handed to the 
direction of  the magnetic field  B (Fig. 4.1). 

Fig. 4.1. Geometrical assignment of  the vector potential A with the magnetic 
field  vector B. 

A static magnetic problem is described by 

V-B = 0 . 
By usmg the magnetic vector potential A, the system of  differential 

equations is reduced to 
V x ( l v x A ) = J . . (4.4) 

M 
Applying the vector calculus Vx(Vx A) = V(V-A)-V'A to 

eq.(4.4) yields: 
V(V.A)-V^A = /Ar„ (4.5) 

with V • A = 0 and by assuming a constant permeability ^ , leads to the 
A-formulation  of  a magneto-static field,  a Poisson equation: 

= . (4.6) 
To consider quasi-stationary fields,  for  example necessary for  eddy 

current calculations, the magneto-dynamic formulations  have to be 
employed. In addition to Ampere's law, the Faraday law (i), (3.26) has to 
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be considered to evaluate the contribution to the field  by the eddy 
currents: 

VxE = - - B = - - V x A . (4.7) 
dt  dt 

Now employing Ohm's law to calculate the eddy currents J^ yields: 

J = - ( 7 - A . ' (4.8) 
dt 

Ampere's law can now be rewritten, yielding the A-formulation  for 
the quasi-stationary magnetic field  in the time domain: 

V X ( 1 v x A ) + CT|-A-J„ . (4.9) 
/J  dt 

Substituting again Vx(Vx A) = V(V A)-V'A and assuming 
V. A = 0 , results in a similar A-formulation  in the time domain for  the 
transient magnetic field: 

= . (4.10) 
dt 

Assuming sinusoidal excitation currents with an angular firequency 
CO and thus substituting 

^ A = JcoA (4.11) 
dt  ^ 

yields the A-formulation  in the frequency  domain to solve eddy current 
problems. 

V'A-;Ú>-;UOA = - ^ , (4.12) 
This equation is the A-formulation  to describe time-harmonic 

problems. The time dependent components of  the vector potential 
A(i}  = Â • cos(tvi + <p) are expressed by: 

^ = . (4.13) 
The current is expressed in analogy in its complex representation. 

4.2 Electric vector potential for  conducting current 

For the calculation of  eddy current problems the electric vector potential 
is often  employed. The current density fiilfils  the zero divergence 
condition. Therefore,  and analogous to A, an electric vector potential T 
can be defined: 

J = VxT (4.14) 
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4.3 Electro-static scalar potential 

By using the vector identity V x (VF) = 0, eq.(i), (3.26) can be rewritten: 
E = - V F . (4.15) 
The negative sign is arbitrary and applied to have a close similarity 

to the definition  of  the magnetic scalar potential. Employing E to eq.(iv), 
(3.29) yields; 

V.VF = V T = - ^ . (4.16) 
E 

This is an equation of  the Poisson type. 

4.4 Magnetic scalar potential 

By analogy to the electric field,  the magnetic field  strength is calculated 
as the gradient of  a scalar potential. It must be distinguished between 
current-carrying and current-free  regions, 

4.4.1 Current-free  regions 
The magneto-static problem without conducting currents can be 
formulated  in terms of  the magnetic scalar potential ^ . 

With the vector identity Vx(V^) = 0 and Ampere's law, a 
magnetic scalar potential <f>  can easily be defined  by evaluating: 

H = -Vii . (4,17) 
This potential formulation  is not suitable for  problems inside regions 

with conducting currents. A typical application for  this type of  potential 
is the calculation of  a magnetic shielding. 

With the zero divergence condition of  the magnetic flux  density the 
^ -formulation  of  the scalar magnetic potential is introduced: 

/iVV = o . 
This formulation  is a Laplace equation. ^ is a scalar and A in the 

vector potential formulation  of  the magnetic field  is a vector quantity. By 
using the same numerical discretisation, the scalar potential problem 
consists of  a third of  unknown when compared to the formulation  using 
the vector potential. This example makes clear that an appropriate choice 
of  the potential formulation  has significant  influence  on the size of  the 
problem. 

This definition  of  the scalar magnetic potential, H = -V(i, causes 
problems in multiple connected domains. 



www.manaraa.com

cut 

Fig. 4.2. Multiple connected domain. 

The domain is free  of  conducting current. There is a current I 
carrying conductor leading through the opening in the domain (Fig. 4.2). 
Applying Ampere's law on the contour X inside the domain yields: 

= . (4.19) 
I  ji 
The potential difference  can only be non-zero if  ^ is 

discontinuous inside the domain. Therefore,  a discontinuity, a cut, is 
defined  in the way that by considering the cut as an outside boundary, the 
domain is not further  multiple connected. 

V-Vi> = VV = / . (4.20) 
Therefore,  the boundary condition applied to the cut is 
<¡>,-<¡>,=1 . (4.21) 
This is a periodic boundary condition. 

4.4.2 Current-carrying regions 
In the case of  current-carrying regions it is not possible to define  a 
magnetic scalar potential. However, by again using an arbitrary vector 
field  T, it is possible to define  a similar potential (Silvester & Ferrari'"^). 

The electric vector potential T and Ampere's law eq.(ii), (3.27) 
yield: 

V x ( H - T ) = 0 . (4.22) 
With the vector identity 

Vx(Vii) = 0 , (4.23) 
the gradient of  the scalar magnetic potential ^ is now defined  by; 

H - T = -ViS . (4.24) 
The zero divergence condition of  the magnetic field  V • B = 0 and 

the material equation combining B and H yields an equation of  Poisson 
type: 

V-(//Vi>) = V.(//T) . (4.25) 
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A disadvantage in solving this problem is that the solution of  the 
magnetic field  problem has to be obtained in three steps: 

1. Determine the auxiliary potential function  T . 
2. Solve the Poisson equation V • = V • to find  the 

magnetic scalar potential. 
3. Evaluate and T to obtain the required overall solution of  H . 

V(//V<i) = ^VV = V-(/n') (4.26) 
is called a -formulation.  The magnetic scalar potential has the 
dimension [A], This potential formulation  is in common use in magneto-
static and diffusion  problems. To determine T, Biot-Savart's law can be 
evaluated (Hafher^^). 

By using the finite  element method, T can be determined in the 
following  way: 

1. Create a tree of  mesh edges. 
2. T= 0 for  all tree-edges. 
3. Apply Ampere's law to each element and determine T for  all co-

tree edges. 

A tree in the topology of  the finite  element mesh is defined  as a set 
of  edges reaching all nodes of  the mesh but forming  no loops in this 
mesh. The associated co-tree is the set of  the remaining edges. 

T is constructed as a field  built of  edge elements : 

(4.27) 

The coefficients  ĥ  , of  the elements associated with the tree edges 
are 0. The coefficients  of  the elements associated with the co-tree edges 
are calculated from  Ampere's law (Fig. 4.3): 

j H d r = + + = I  . (4.28) 

Fig. 4.3. Tree definition  and finite  element with imposed current. 
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With Table 4.2 a comparison of  the properties of  the magnetic 
vector and scalar potential is possible. 

Table 4.2. Comparison between A- and ^ -formulation. 

A-formulation ^ -formulation 
potential 
formulation 

vector potential 
V'A  = -/jJ 

scalar potential 

implicitly fulfilled  equation 
explicitly fulfilled  equations 

V B = 0 
V x H = J 
3 = ; « 

V x H = J 
V . B = 0 
B = AÎH 

source field J T has to be determined 
additional condition 
element type 

gauge 
edge 

cut 
node 

4.5 A ̂ -formulation 

It is sometimes interesting to use a hybrid A ̂ -formulation.  The <f>-
formulation  is used in regions without current whereas an A-formulation 
is used in regions with an applied current density. At the interface 
surfaces  between regions with a different  potential formulation,  the 
conditions for  H and B are applied: 

( H , - H J t = ( V i S - l v x A ) t = 0 , 
(4.29) 

(B , -B , ) n = (/ iVii-VxA) n = 0 . 
The advantage of  this approach compared to the ({i -formulation,  is 

that no source field  T has to be constructed. The advantage of  this 
approach compared to the A-formuIation,  is that regions without current 
are described by a scalar potential instead of  a vector potential. A 
disadvantage of  the hybrid formulation  is the extra interface  condition. 

4.6 AV-formulation 

Using Ampere's law and the magnetic vector potential and applying the 
appropriate material equation yields: 

VxH = J = J , + o E , 
' a (4.30) 

dt 

V'A - ficr^A  = - //oVK 
dt 

(4.31) 
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This equation is called the AV-formulation  of  the magnetic field. 
The presence of  the derivative in time indicates the magneto-dynamic 

field  problem. By substituting = J ^ ^ this formulation  is transferred 

from  the time domain into the frequency  domain: 
V 'A- ;a ) - / / aA = -/Al.-/ /aVK (4.32) 

Fig. 4.4. Field problem in two-dimensional AV-formulation. 

4.7 In-plane formulation 

The inverse problem, to calculate a current density distribution for  an 
imposed magnetic field  can be obtained by using an in-plane formulation. 
Applying the Maxwell equation (3.8) and using the magnetic scalar and 
electric vector potential yields a particular T Ĵ -formulation. 

at at 
j = oE = VxT yields: 

VxE = Vx(-i-VxT) . 
£T 

(4.33) 

Finally the in-plane T^-formulation,  valid in the time domain, is 
described by: 

d  d 
V X (V x T ) + //(T—T = fia—V<f> 

dt  dt 
(4.34) 

In the frequency  domain, by assuming a sinusoidal magnetic field 

and substituting —T = JafT,  it can be written: 
dt 

V X ( V X T) + y ú) •//oT = y iy •/ioV (i (4.35) 
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This formulation  is very similar to the A-formulation  of  the 
magnetic field  and can be solved with the same methods. This 
formulation  can not be applied to non-conducting regions. There, 

V-(//r) = V.(//Vii) (4.36) 
must be evaluated. 

Fig. 4.5. In-plane T (i -formulatìon. 

4.8 AV-formulatioti  with v x B motion term 

For the moving system and the resting observer, as introduced earlier, the 
motion term is considered by applying: 

J = OE + £7(VXB) (4.37) 
Together with Ampere's law (3.9), this leads to the AV-formulation 

considering the motion term v x B. 

V'A + ^<7{y X (V X A)) - f i a ^ K  = + /ioV K (4.3 8) 
at 

Considering the motion term causes the later coefficient  matrix to be 
non-symmetric. This is important for  the stability of  the method used. To 
obtain a stable solution procedure, the discretised part of  the convection 
term /icr(v x B) has to be smaller when compared to the term V'A 
(Hackbusch ") . 

4.9 Gauge conditions 

With the known material equations, the magnetic flux  density B can be 
expressed by the magnetic field  strength H or vice versa; D and J 
respectively can be determined by the electric field  strength E: 

VxH = J = J„ + oE 

V A - V(V • A) - / i o - A =-;UJ„ +/ioVK 
dt 

(4.39) 
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and 

(4.40) 
V-VF + ~ V A = - ^ . 

dt  e 
The numerical difficulty  with the equations is obvious; they are 

coupled. In both equations both potentials are found.  Evaluating these 
equations to obtain the potentials shows that the solution obtained in this 
way for  the vector potential A and the electric scalar potential V  is not 
unambiguous. Therefore,  a gauge has to be applied to define  the potential 
solution uniquely. Different  gauges are possible. Arbitrary additions to 
the coupled potentials A or F do not influence  the field  values: 

B = V x A , (4.41) 

VK = - E - — . (4.42) 
ôt 

Those additional constants can be normalised by fixing  an arbitrary 
point in the field  region to zero. With this normalisation, the potential 
solution is not yet unique. Therefore,  a divergence condition for  A has to 
be given. The choice of  this condition is arbitrary because it influences 
the values of  A and F only, but not the value of  the derived field 
quantities B and H. The most simplest and frequently  used gauge 
condition for  static fields  is the zero divergence condition, the Coulomb 
gauge: 

V-A = 0 . (4.43) 
Applying the Coulomb gauge yields for  the potential eqs.(4.39) and 

(4.40): 
/9A 

V ' A = , (4.44) 
âl 

and 
V.VF = V'F = - ^ . (4.45) 

s 
Employing the Coulomb gauge here simplifies  these equations 

insignificantly.  The potentials stay coupled. Here, it is interesting that the 
potential F satisfies  and describes the type of  a Poisson equation. 

To de-couple the potential equations, the Lorentz gauge 
V-A = -McrV (4.46) 

can be used. Applied to the equations (4.39) and (4.40) this yields: 
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(4.47) 

^ 3r £ 

An advantage of  using the Lorentz gauge is the fact  that the de-
coupled potential equations satisfy  differential  equations of  the same 
form.  Assuming the case p = 0, the Lorentz gauge can be written by: 

V.VF + -^V .A = 0 (4.48) 
dt 

For the source-free  case, p = J^ = 0, the Coulomb gauge is 
interesting. The equation for  the scalar potential becomes a Laplace 
equation and if  the scalar potential is normalised to zero in infinite 
distance, the solution of  the Laplace equation is trivial ^ = 0. Therefore, 
only one equation remains: 

V'A-fia—A  = 0 (4.49) 
dt 

The interesting field  vectors E and B can directly been determined 
by the vector potential: 

B = V x A , 

E = - 1 A . 
dt 

The Lorentz gauge is in common use in solving wave equations. 
There, the displacement current density is considered. The 
inhomogeneous wave equations are given at this place for  completion: 

d  d^ 
dt  dt (4.51) 

dt  dt  £ 

4.10 Subsequent treatment of  the Maxwell equations 

To obtain solutions for  real-life  field  problems, a subsequent treatment of 
the Maxwell equations is necessary. The potentials are introduced to 
reduce the mathematical dimensions of  the field  problem. This approach 
results, for  example for  a line integral, in building a simple difference.  To 
improve understanding of  the field  equations, a scheme is introduced 
representing the Maxwell equations. The various potentials are 
implemented in this scheme (Hafher 
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The four  field  equations in differential  form  can immediately be put 
into a schematic: 

E Vn 
- J ® 

^ a 
J ( ^̂  H 

^ ^ D 
B 

To keep magnetic and electric field  quantities in the same column, 
the div  and curl  operators point to the right or left  respectively. Consider 
the four  following  possible chain or arrow structures, with s a scalar and v 
a vector potential field. 

s 
0 . . . < V 

V > ... 0 
5 

The arrows represent the differential  operators div,  curl  or grad 
respectively. A chain consists of  at maximum two arrows. The second 
arrow always points to zero. Two arrows in one direction indicate a 
double derivative in the same direction in space. 

Comparing this structured scheme with the structure of  the Maxwell 
equations indicates the places where the scheme has to be completed by a 
potential. It is obvious that the fourth  arrow chain can be completed by 
the vector potential A in the form  B = V x A because the flux  density B 
satisfies  the zero condition for  a divergence free  field  eq.(iii), (3.28). 

Applying this relation to the first  Maxwell equation yields 

V x ( E + — ) = 0 . (4.52) 
a 

Completing with the electric scalar potential of  a gradient field  V 
and in arrow notation it is: 

-V  " > — ^ ® • 

The complete scheme with the arbitrary potentials can now be written by: 
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0 
P V-

- E -

J 
D 
A 

a 

V» 

0 

H 

B 

To study the field  equations further  and to see the interdependencies 
between the source terms and the potentials, an improved graphical 
scheme can be used, the diagrams of  Tonti (Bossavit'®). 

Using the same schematic as in the last section for  the differential 
operators, and introducing an additional arrow for  the time dependency of 
the quantities, the following  arrow system is obtained (Table 4.3): 

Table 4.3. Tonti's arrow system notation. 

interdependency operator arrow 

geometry V vertical 

V-

V x 

material M horizontal 

£ 

derivative with respect to time g perpendicular to material 
and geometrical arrow 

b) 

d 
B a 

D 
V ^ 

V- \ 

P 1 

0 

Vx 

E 

Fig. 4.6. Maxwell equations in Tonti's arrow notation for  a) the magnetic field 
and b) the electric field. 
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The strong equivalence of  the electric and magnetic fields  is obvious 
using this notion (Fig. 4.6). The magnetic flux  density B and the electric 
flux  density D connect both field  types. This resuhs in the diagram of 
Tonti for  the electro-magnetic field  (Fig. 4.7) (Bossavit'®). 

E 

Vx 

a) 

r» f L s l 1 ^ l X £ 1 
D « ! 

r» f L s l 1 ^ l X BÌ 
d 

0 1 

E 
Vx 

Vx 

b) 

V'" 
e d 

D a B 
a V à 

0 i 

V-

J 

Vx 

H 

Fig. 4.7. a) Tonti's diagram for  the electro magnetic field,  b) by considering 
Ohm's law. 

If  conducting material is assumed, the dependency of  electrical field 
strength and current density can be considered in the diagram of  Tonti 
directly by Ohm's law (Fig. 4.7) 

J = oE (4.53) 
This equation, and respectively its arrow, represents the time 

independent current from  eq.(ii), (3.27). 
For ideal conductors we have the zero divergence condition, and 

therefore  it can be written: 
V - J = 0 (4.54) 
To complete the diagrams, the defined  potentials can be added to it 

as indicated (Fig. 4.8). 

E 
Vx 

; ^ 
: a 

0 
A 
"Vx V-

j 
B ' 

Vx 
v \ 

H,T 
V 

Fig. 4.8. Diagram of  Tonti with potential defmitions. 
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We consider that a variational principle or a boundary problem can 
describe a given physical-technical problem. Thus, this field  problem is 
given by a differential  equation. The problem is now to find  a feasible 
solution of  this differential  equation. 

Fig. 5.1 shows the various possibilities for  solving general field 
problems. The methods applicable for  use can be divided into two 
general classes, analytical and numerical methods. Methods which are 
based on simplified  analytical models are called semi-numerical. 

Fig, 5.1. General field  analysis. 

When compared to numerical techniques, analytical methods have 
the opportunity to deliver the exact solution of  the differential  equation. 
Those approaches, separation of  the variables and Laplace 
transformations  or other methods, can be applied to geometrically simple 
problem formulations  only. Analytical approximations are suitable where 
the problem itself  is very well known so that it is possible to apply 
appropriate simplifications.  The entire above-mentioned reasons limit the 
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general application range for  analytical methods. They are very suitable 
for  specific  problems. If  an analytical approach is applicable, the solution 
is obtained in a rather short time; this is another great advantage of  the 
analytical techniques when compared to the numerical methods. 

Numerical integration, Runge-Kutta, Euler and other techniques can 
obtain direct solutions from  systems of  partial differential  equations. The 
finite  difference  method computes the solution by applying Taylor series 
to approximate the field  quantities in pomts of  a mesh grid covering the 
domain of  interest. The finite  element approach belongs to the discrete 
methods and will be the topic of  the following  chapters. The discrete 
element methods have the ability to be used in general applications. 
Therefore,  different  types of  problems can be solved by the same 
method. They can be solved employing the same numerical structure. 

To solve a technical field  problem numerically, an appropriate 
method has to be chosen. The most important methods are listed here: 

• finite  element method (FEM) 
• finite  difference  method (FDM) 
• boundary element method (BEM) 
• magnetic equivalent circuit (MEC) 
• point mirroring method (PMM). 

Table 5.1. Numerical field  computation methods. 
method principle of 

discretisation 
geometiy 

approxiination 
non-linearhes computational costs 

FEM 

FDM 

BEM / 

MEC 

PMM 
0 

W////MW 
-q. 

extremely flexible 

inflexible 

specific  geometries 

simple geomeuies 

possible 

possible 

exiiemety flexible  troublesome 

possible 

by constant 
factors 

high 

high 

high 

very low 

low 
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Today, the FEM is a well known method and is commonly used for 
electromagnetic field  problems. The two most popular methods for 
deriving the finite  element equations are the variational and the Galerkin 
approach, being a special case of  the method of  weighted residuals. For a 
two-dimensional analysis, the domain of  interest is discretised into a 
number of  simple triangular or rectangular elements, the finite  elements, 
with homogenous properties. For three-dimensional problems, tetrahedra 
or other simple volume elements are used. The potential fimction  is 
approximated in those finite  elements by simple shape functions,  mainly 
linear or quadratic. This results in a large linear system of  equations. 
Saturation effects  can be considered easily. Using triangular elements for 
two-dimensional field  problems and tetrahedra in three dimensions, a 
very good approxbnation of  the geometry is obtained. The FEM is the 
most flexible  method when compared to all the other techniques listed in 
Table 5.1. 

Historically the FDM is the oldest method. Here, the domain of 
interest is discretised by a grid with discrete points. The differential 
equation of  the particular field  problem is locally transferred  into a 
difference  equation. This leads to a linear system of  equations to be 
solved. The solution at the grid points approximates the field. 

Due to the discretisation of  the domain by a grid, in xy or polar co-
ordinates, this method is in some cases troublesome in accurately 
approximating the geometry (Table 5.1). A local grid refinement  to 
increase the solution accuracy can not be obtained in an efficient  way. 
Non-linearities can easily be implemented using Newton iteration 
schemes. A three dimensional FDM is possible under the same 
restrictions as mentioned before.  The FDM lost its importance and is 
nowadays used for  problems in the time domain only and is still popular 
in fluid  dynamics. 

Using a particular approach at the boundaries of  a field  domain 
including the solution of  the fiindamental  system (Green functions)  of  the 
partial differential  equation represents the basic idea of  the BEM. Using 
this connection, only the boundaries of  the region of  interest are 
discretised. Due to this discretisation the geometry of  a domain can be 
approximated very accurately. The coefficient  matrix of  the BEM is, in 
contrast to the FDM and FEM, completely filled,  non-symmetric and not 
positive definite.  Therefore,  special solvers have to be used for  the 
resulting system of  equations. Non-linearities are very difficult  to 
account for. 

The equivalence of  the steady state electrical flow  field  and 
electromagnetic field  is exploited in the MEC. This method recommends 
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a principal knowledge of  the field  distribution. Here, the field  domain is 
discretised by lumped parameter elements, representing the reluctances 
and sources of  the problem. To obtain a potential at the nodes of  this 
network, a rather small linear system of  equations has to be solved. 
Therefore,  the MEC is fast.  The low level of  discretisation, when 
compared to the FEM, results in an acceptable accuracy for  field 
quantities. The computation of  forces  in electrical machines is 
troublesome, as a derivative of  the reluctivity is required. Non-linearities 
can be implemented easily. 

The PMM exploits the analogue formulations  of  the magnetostatic 
and electrostatic field  problems. The PMM has its origin in analytical 
field  calculations. Permanent magnets are considered by magnetic 
surface  charges and are mirrored at the boundaries of  the region of 
interest following  the rules of  the electrostatic field.  This method is very 
fast,  but restricted to very special geometries. Saturation can be 
considered by constant permeabilities only. An advantage using this 
method is the fact  that special problems (3D high voltage transmission 
lines, 3D permanent magnet constructions) can be solved relatively easily 
and fast,  whereas the FEM or other discretisation methods require huge 
efforts  to define  the problem, at high computational costs. 

The advantages and disadvantages of  the above-mentioned methods 
are collected in Table 5.1. In the following  section examples are given 
for  the MEC and PMM to demonstrate their strength in selected problem 
classes of  the design of  electromagnetic devices. 

5.1 Magnetic equivalent circuit 

advantages disadvantages 
fast simple geometries only 
easy to implement flux  paths must be known to build up the model 
non-linearities possible force  computations are troublesome 

5.1.1 Computation of  field  quantities of  an electromagnetic 
actuator 

For the optimisation of  magnetic circuits by numerical methods, fast  field 
computation algorithms are recommended. If  the field  problem is not too 
complicated, the MEC can be employed. Here, the computation of  an 
actuator with permanent magnets is discussed. 

Using the formal  equivalence of  the electric flow  field,  the magnetic 
field  components of  an electromagnetic device can be obtained using a 
magnetic equivalent circuit. With the rules of  the circuit theory, this 
mode] of  the electromagnetic circuit is solved. Compared to the finite 
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element method, this approach offers  the ability to obtain accurate results 
with low computational costs. Inherent non-linearity due to the 
characteristic of  the ferromagnetic  parts in the magnetic circuit is 
implemented. Non-linearities caused by the relative displacement 
between moving parts are implemented as well. Results obtained by 
simulations are compared with measurements on a small permanent 
magnet-excited actuator (Fig. 5.2). 

Fig. 5.2. Geometry and flux  plot of  the actuator computed by FEM. 

Biirj=r(B) Dii-;!« (Sii-MPM 

Fig, 5,3. Complete magnetic equivalent circuit. 
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A two-pole diametrically magnetised permanent magnet rotor ring is 
centred in the stator bore. The two-phase armature winding is arranged in 
closed stator slots. 

The equivalent magnetic circuit (Fig. 5.3) consists of  magnetic 
resistors, defined  by flux  tubes, and flux  and/or mmf  sources. The 
solution of  this field  problem is the analysis of  a non-linear network. 

S(x) is the area perpendicular to the direction of  the flux  (P at the 
position X where and ^̂  are the magnetic potentials at both ends of  the 
flux  tube. The difference  - corresponds to the magnetic voltage 
drop along the flux  path. The magnetic resistor Rn, for  the equivalent 
magnetic circuit is 

= 
dx (5.1) 

M(x)S{x) 
Since in iron parts of  the electromagnetic device the permeability 

|i(x) is a function  of  the flux  density, the field  problem is non-linear. 
Permanent magnet material with its demagnetisation characteristic is 
included in the equivalent magnetic circuit as well. An evaluation of 
Ampere's law leads to the mmf  sources modelling the windings in an 
electromagnetic device. 

To solve the network problem, a node-based method is used, 
enabling, when compared with branch-oriented algorithms, a more easy 
assembly of  the node permeance matrix. The solution of  three 
dimensional networks is possible as well. As the result of  this network 
circuit analysis, the potentials at the nodes are obtained. From the known 
node potentials, the interesting field  quantities can be derived. The 
advantages of  the method used are; 

• direct assembling of  the system of  equations 
• diagonal dominant coefficient  matrix 
• sparse system 
• no restrictions to planar graphs. 

2 k3 

a) b) 

Fig. 5.4. a) Network and b) directed graphs. 
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The clearest and most flexible  way to describe the structure of  a 
network is by setting up a graph or mathematical topological matrices. 
The topology describes the properties of  the network concerning its 
structure without considering the properties of  the network elements. The 
structure is modelled by a directed graph (Fig. 5.4b). The incidence 
matrix A of  the directed graph describes the topology of  the network. Its 
columns indicate the branch number and its'rows the node number. The 
elements of 

A = 

are 

a, 

ti •^ki 

(5.2) 

1: if  branch j is directed away from  node i 
- 1 : if  branch j is directed to node i (5,3) 

0: branch j is not incident with node i . 
The subscript k  denotes the number of  nodes and z the number of 

branches. 
After  introducing the vectors, modelling the flux  and ©^ giving 

the mmf  sources in the network, and with the diagonal matrix D 
representing the branch permeances, the complete system of  equations is 

ADAV = A(<P. - DO.) . (5.4) 
In (5.4) the vector ^ contains the required node potentials for 

further  consideration. The system (5.4) can be solved either by direct or 
by iterative methods. 

The network of  a magnetic equivalent circuit consists mainly of 
non-linear elements where the permeance of  a flux  tube depends via the 
permeability on the flux  density. Therefore,  the flux  density B as a 
function  of  field  strength H of  such elements must be given and 
incorporated into the solution process. The Newton algorithm obtains the 
iterative solution. The iteration instruction for  iteration step (k+l) is 

(5.5) 
where ^"'represents the solution vector containing the node potentials 
from  iteration step k  , J((i'*') is the Jacobi matrix and the 

fundamental  system. To assemble the Jacobi matrix with the term 
Mt  dfi  the given non-linear material characteristic B=f(H)  is evaluated 
by cubic spline interpolations. This enables the use of  the term directly 
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because the derivative is already included in the interpolation algorithm 
and thus available without additional numerical expenses. 

When computing the magnetic field  quantities mainly the generated 
forces  and/or torques of  an electromagnetic energy converter is of 
interest. The electromagnetic torque of  the actuator is calculated using 
the energy principles according to virtual work. 

Computations with increasing winding currents are performed  to 
verify  the accuracy of  the magnetic equivalent circuit model at different 
saturation levels mside the iron parts. Fig. 5.5 shows a very good 
agreement between the methods. For the computed and measured torque 
versus position, a good agreement is found  as well. 

The computation time to solve the non-linear magnetic equivalent 
circuit with 210 elements (Fig. 5.3) is of  the order of  seconds. 

Fig. 5,5. Air gap flux  density with different  winding currents. 

5.2 Point mirroring method 

advanuees disadvantages 
relatively fast 

3D fields 

non-linearities only considered by constant 
factore 
special geometries only 
special boundery conditions have to be assumed 

To demonstrate the strength and shortcomings of  this method, on the 
other hand, two examples are worked out. In the first  example a 
ferromagnetic  circuit is calculated. The main limitations in this example 
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are seen in the assumption that the iron circuit is piecewise constant 
saturated. In contrast to this shortcoming, the geometry of  the disc-type 
motor is rather complicated and requires a three-dimensional calculation 
of  the field.  The assumption of  a plane mirror surface  can be seen as a 
very strong boundary condition thus limiting the application range. 
Therefore,  no slots are allowed in this type of  model. An air gap winding 
is recommended in order to be able to compute the air gap field  in this 
machine. 

The second example, a high voltage transmission line, is due to the 
slag of  the line, an inherently three-dimensional field  problem as well, 
but in this case linear. The assumption of  a plane mirror surface,  the 
ground plane below the line, is here the strong limitation. As a 
consequence, the field  can not be calculated in a hilly neighbourhood. 
Nevertheless, measurements and computations are in good agreement. 

5.2.1 Computation of  the field  quantities of  a disc-type motor 
In this section the basic ideas of  the method of  point mirroring are given. 
With a relatively small amount of  computation time the field  quantities 
of  very complicated geometries can be studied. The method permits 
three-dimensional magnet field  calculations. Here, the method is used to 
calculate the flux  distribution of  a disc type motor. The rotor of  the motor 
consists of  a NdFeB permanent magnet ring. An air gap armature 
winding is fixed  to the stator. Fig. 5.6 shows the construction of  the 
motor. 

1 distance bolt 
2 guard ring 
3 magnet 
A baclc iron 
5 position bush 
6 distance bush 
7 shaft 
8 bearing guard 
9 bearing 
10 bearing cap 
11 yoke holder 
12 armature winding 
13 winding holder 
14 guard ring 
15 bearing 
16 plate anchor 
17 coil end-winding 

Fig. 5.6. Construction of  the studied disc type motor (Hanitsch et al."). 
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Four poles (2p=4) are axially magnetised on both rotor magnet 
rings. The used magnet material is NdFeB. In the case of  rare earth 
material, the assumption of  a straight-lined characteristic of  the 
demagnetisation curve of  the magnet material is realistic. In the operating 
range of  the magnet, the magnetisation is almost independent of  the 
demagnetising field  strength. 

The magnetisation of  a volume is the sum of  all dipole moments m; 
divided by the volume v. Two different  computational models, 
respectively representations for  the magnetisation M are possible: 

• distributed currents (Fig. 5.7), 
• distributed magnetic charge (Fig. 5.8). 

The magnetisation is the effect  of  all elemental currents inside a 
magnetic medium. The circulating current of  one dipole cancels the 
current of  the neighbouring dipole, if  the dipoles are parallel and have 
the same magnitude. If,  further,  all dipole moments are uniformly 
distributed throughout the volume, all volume currents vanish except 
the current at the surface,  the surface  current density /¡(Fig. 5.7). In this 
model, the distribution of  magnetic dipole moments is equivalent to the 
distribution of  currents at the surface  of  a magnetic medium and within 
the volume. 

With the Maxwell equations the static magnetic field  can be 
expressed as a solenoid field  of  flux  density and the curl of  the magnetic 

= M X n 
/ = V x M 

Fig. 5.7. Magnetic magnetisation M with current model. 
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(5.6) 

field  strength; 
V B = 0 

V x H = J . 
Under the assumption of  no field  exciting currents inside the 

permanent magnets, it can be written: 
V x H = 0 . , (5.7) 
With vanishing V x H = 0 formally  the magnetic field  strength can 

be described as a gradient field  of  a scalar potential function. 
= ^ . (5.8) 

Using the demagnetisation characteristic of  permanent magnet 
material B = /¿„(H-t-M) it can be formulated 

V-B = /i,(V-H + V-M) = 0 (5.9) 
yielding 
V-M = -V-H = V-Vi)„ = . (5.10) 
Formally V-M = A$j„ is appropriate to the Poisson-differential 

equation of  the electrostatic field.  Analogous to the electric space-charge 
density and to the electric surface  charge an auxiliary magnetic quantity 
can be defined. 

a-„ = -V-M . (5.11) 
With known inner magnetisation M of  the magnet, the divergence 

of  the magnetisation can be identified  as an auxiliary magnetic surface 
charge (T„. 

, M-n 
"T' 

Fig. 5.8. Permanent magnet shape with auxiliary magnetic surface  charge. 

As shown in Fig. 5.8 for  the upper pole surface,  this yields 
- V - M = - n ( - M ) = Mo , (5.12) 
and for  the lower pole surface 
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- V - M = -n{M) = -Mo . (5.13) 
In this consideration, the laws of  electrostatic field  can be used to 

evaluate the scalar potential (p„{P)  and magnetic field  strength H(P) in a 
point P. Integration is performed  over the surface  of  the north AN and the 
south pole surface  As. 

An •*s 
(5.14) 

A// 
To determine the flux  density of  the ring-formed  permanent rotor of 

the mentioned disc-type motor, the ring is subdivided into trapezoidal 
single magnet elements (Fig. 5.9). 

Fig. 5.9. Permanent magnet ring (Walkhoff'"). 

The superposition of  elementary and simple magnet shapes is 
performed  in order to form  a complicated-shape permanent magnet. 
Here, the superposition of  the field  components of  cubed and triangle 
magnet elements resuh in the required trapezoidal magnet as indicated in 
Fig. 5.10. The magnetic field  excited by the permanent magnet ring can 
now be calculated at every point P outside the magnet volume. 
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To consider the ferromagnetic  back iron inside the real machine, the 
magnetic surface  charges have to be mirrored at the boundaries of  the air 
gap. The laws governing the electrostatic field  can be used here. A mirror 
interval of  4 to 5 steps is sufficient  to obtain an acceptable accuracy 
(Walkhoff'"). 

Fig. 5.10. Superposition of  cube and triangle to obtain a trapezoidal shaped 
magnet. 

With these considerations, the auxiliary configuration  for  the 
calculation of  the air gap field  of  the disc-shaped motor, using the point 
mirroring method, can be constructed (Fig. 5.11). 

Fig. 5.11. Auxiliary configuration  and co-ordinate system (Walkhoff  "'). 
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Mirroring the mentioned surface  charges is done at the material 
boundaries having permeabilities and ^ (Fig. 5.11). Saturation is 
considered by the constant factors. 

The z-component of  the resulting flux  density distribution of  a pole 
pitch of  the mentioned disc-type motor can be taken from  Fig. 5.12. 

Fig. 5.12. Three-dimensional air gap flux  density distribution (Walkhoff  "*). 

5.2.2 Computation of  the fields  below AC high voltage lines 
Overhead transmission lines generate in their vicinity electric and 
magnetic fields.  The source of  the magnetic field  is the current in the 
phase conductors. The electric field  is caused by the high potential at the 
phase conductors. 

The problem specifies  small diameter conductors above a large flat 
conducting ground plane. The phase conductors are at a time-dependent 
specified  electrical potential and cany a time-dependent current. Due to 
the slag of  the phase conductors, the field  problem turns out to be three-
dimensional. Only symmetric three-phase voltage and current systems 
are considered. The ground below the transmission line is a uniform 
plane. 

The field  problem may be considered as quasi static. Therefore,  the 
solution can be determined by static techniques. With respect to the slag 
of  the phase conductors, infmitesimally  thin, segmented filaments 
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approximate the geometry of  a single conductor. Due to the symmetry 
between two poles, one half  of  the arrangement is drawn in Fig. 5.13 
only. The value of  s indicates the slag, / is the distance between the two 
high voltage poles, the span field  length. 

Fig. 5.13. Geometric modelling of  a conductor. 

5.2.2.1 Electric field  The electric field  is computed by mirroring 
single line charges at the assumed to be ideal conducting ground plane 
below the phase conductors. Each infinitesimally  thin filament  segment 
represents in this case a line-charge. A constant line-charge at any 
position in the original co-ordinate system (x, y, z) is drawn in Fig. 5.14. 
To evaluate the field  quantities of  the line-charge, this co-ordinate system 
has to be transformed  into a system ix,y^z). This transformation  is 
performed  in two steps. The first  step consists of  a parallel shift  of  the 
origin into the starting point of  the line-charge. In a second step a 
rotation of  this temporary co-ordinate system (x", y'',z'') around the x°-
axis is carried out in such a way that the line charge lies in the x°-y° 
plane. The last rotation in this step is around the z^-axis so that the line-
charge lies in the x^-axis. In this co-ordinate system the potential cp of  the 
line-charge in the point P(jc,j7,z) is given by: 

Aide 
-In l-x + ^y'+T+jl-xJ 

-x + ̂ T  +y'  +T 
(5.15) 
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Fig. 5.14. Co-ordinate transfonnation  of  an infmitesimally  thin filament  segment. 

To evaluate the field  quantities with respect to this boundary 
condition, the line-charge has to be mirrored with respect to the plane x-
y. Superposition of  line-charge g and mirror-charge -q, indicated in Fig. 
5.14, gives the potential (p at the point inside the global co-
ordinate system. 

To consider the slag of  the conductors, a quadratic approximation is 
used. Referring  to Fig. 5.13, it can be written as 

fiy)  = s (5.16) 

With the known complex potentials <p of  the / conductors and 
transforming  eq. (5.15) to compute the coefficient  matrix A, a linear set 
of  equations can be formulated. 

A-q = ̂  . (5.17) 

The solution determines the charge q̂  of  each element of  the 
conductors. With these values the components of  the electrostatic field 
strength in the point P(x, y,z) can be computed. 

d(p dm  dm -e + — e 
dz 

(5.18) 
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Fig. 5.15. Convergence of  the simulation with respect to the slag of  the high-
tension line. 

To illustrate the convergence behaviour of  the method, attention 
should be paid to Fig. 5.15. With an increasing number of  infinitesimally 
thin filament  segments for  one half  of  the span field,  the electrostatic 
field  strength converges to the correct value. Calculations with 5...7 
polygon elements deliver results with a reasonable accuracy at acceptable 
computational costs. 

5.2.2.2 Magnetic field  The magnetic field  problem is considered to be 
linear. Hence, the superposition of  partial fields,  calculated with the Biot-
Savart law, result in the overall three-dimensional field  distribution 
below the line. 

In this case each segment of  the infinitesimally-thin  filament  (Fig. 
5.14) carries a current i(t).  The generated flux  density of  this part of  the 
conductor is 

iffl •i(t)-dl-sma (5.19) 

The point where the flux  density has to be calculated has to be 
transformed  into the co-ordinate system (x,y,z).  After  integrating eq. 
(5.19) the flux  density is calculated with 

l~x 
B _ A 

47rr 
m 

[^lo-xy 
(5.20) 

If  n is the number of  current carrying conductors, superposition of 
the individual flux  densities results in the overall flux  density: 

B = S B , . (5.21) 
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5.2.2.3 Finite element model The second numerical field 
computation method able to compute solutions in this problem class is 
the finite  element method. Special boundary conditions applied to the 
field  problem result in an effective  use of  this method. The application of 
open boundary conditions gives the opportunity to discretise the field 
problem in regions of  interest only. This results in lower computational 
costs. With respect to the computational efforts,  only two-dimensional 
computations are performed  with this numerical method. 

Fig. 5.16. Open boundary model to compute the electric field  of  a 150 kV AC 
single system transmission line, (the triangulation of  the domain is invisible) 

A cross-section of  the transmission line is made at the place where 
the wires are nearest to ground level (Fig. 5.16). Here, the highest field 
values are expected. A two-dimensional finite  element model 
perpendicular to the line is built. The region of  the cross-section is 
subdivided in triangular finite  elements (Fig. 5.17). The potential 
distribution over each element is approximated by a polynomial. Instead 
of  solving the field  equations directly, the principle of  minimum potential 
energy is used to obtain the potential distribution over the whole model. 
The ratio of  the largest size of  a fmite  element to the smallest size in the 
model of  a transmission line is about 10,000. The circular boundary of 
the model has a radius of  about 100m, while the radius of  the conductors 
is a few  centimetres. Therefore,  special attention must be paid to obtain a 
regular mesh with well-shaped elements, ensuring an accurate solution of 
the field  problem. Thus, a high degree of  discretisation resulting in a 
large system of  equations must be applied. Fig. 5.17 shows a part of  the 
finite  element model around one of  the phase conductors. The change in 
the size of  the elements in the direction away from  a conductor can be 
noticed (Fig. 5.17). 

When computing the electric field  strength, it is assumed that the 
ground plane below the transmission line is an equipotential surface. 
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Therefore  it is not necessary to discretise the ground as indicated in Fig, 
5,16. In contrast, in the magnetic field  model the ground has the same 
magnetic properties as the surrounding air and has to be discretised as 
well. This results in an increased number of  finite  elements and thus in 
higher computational costs. 

In contrast to the semi-numerical method, where the phase 
conductors are modelled taking only a few  seconds to compute the field 
quantities, the calculation time of  one transmission line on a PC-486 
platform  using the finite  element method is about 30 minutes. 

single conductor 
Willi surrounding air 

Fig. 5.17. Part of  the finite  element model around a single phase conductor. 

5.2.2.4 Measurements The measurement of  the electric field  strength 
excited by the transmission line are based on the induced current of  the 
charge oscillations between two halves of  an isolated conductive body. 

The measurements of  the magnetic field  strength are based on the 
electromotive force  induced in a coil. Therefore,  the probe of  the field 
meter, Holaday Industries model HI-3604, consists both of  two circular 
isolated parallel plates and of  a circular coil. To avoid perturbations of 
the electric field,  a fibre  optic receiver and a non-conductive tripod to 
support the field  meter are used. Only the nns value of  the space 
component perpendicular to the plane of  the probe is measured. The field 
quantities below the overhead transmission lines are measured at a height 
of  Im above ground level. 

5.2.2.5 Numerical and experimental results All computations and 
measurements on a Belgian 150 kV AC single three-phase system 
transmission line are performed  at the place of  the maximum slag. 
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Because the transmission line is situated in a flat  area in Belgium, the 
ground level is assumed to be even. 

To obtain the local field  values with reasonable accuracy, a third 
order finite  element solution is necessary. The use of  shape functions  of 
third order explains the long computation time. Fig. 5.18 shows the x-
and z-component of  the rms value of  the magnetic field.  Good agreement 
between the measurements and computed data can be stated. The two-
dimensional approach overestimates both x- and z-component of  the 
magnetic field.  The reason for  this lies in the type of  approximation of 
the geometry of  the transmission line. In the two-dimensional model a 
phase conductor of  infinite  length with constant height above the ground 
is considered. Therefore,  the two-dimensional approach represents the 
worst case, i.e. the highest values of  field  strength. 
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Fig. 5.18. Comparison of  computed magnetic field  distribution and measured 

data Im above ground a) x-component and b) z-component. 

Fig. 5.19 shows the effective  value of  the z-component of  the 
electric field.  The calculations and the measurements show good 
agreement. 

Fig. 5.19. Comparison of  computed electric field  distribution with measured data 
Im above ground level. 
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In Fig. 5.20 tiie three-dimensional electric field  distribution below 
the 150 kV ac transmission line obtained by the PMM method is plotted. 
The geometrical model of  the single phase conductors consists of  seven 
polygon elements per half  of  the overall span field.  The high-voltage pole 
is located at the global co-ordinates x=Om and y=220m. 

As expected, the maximum field  values are found  in the middle of 
the field  span at the co-ordinates y= Om. Here, the values of  the electric 
field  strength are in the range of  4 kV/m and thus well below the 
maximum allowed exposure values for  the general public, given by the 
standards in Table 5.2. 

JO ID 0 -I" 
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Fig. 5.20. Electric field  distribution below the 150 kV AC high-voltage line 
computed by the point mirroring method. 

Referring  to Fig. 5.18, the magnetic flux  density of  the x- and z-
component, generated by the current carrying conductors, are in the 
range of  0.4-0.6 jiT. According to Table 5.2 those values of  the magnetic 
flux  density are far  below the allowed limits as well. 

Due to the linearity of  the problem formulation,  calculations of 
power lines with different  types of  AC-high-voItage poles carrying 
multiple three-phase voltage and current systems can be performed.  In 
this case the field  components generated by the single systems have to be 
superposed according to the relative phase angle between the systems 
and the considered instant of  time. Fig. 5.21 shows the results, computed 
by the semi-numerical technique, of  a high-voltage transmission line 
consisting of  six three-phase systems with different  voltage level (2x3 80 
kV, 2x220 kV, 2x110 kV). For the magnetic flux  density it is assumed 
that each system carries a current of  1000 A. The system with the largest 
transmission voltage is put at the top of  the pole, while the system with 
the lowest voltage is located below it. 
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Fig. 5.21. a) High-voltage pole construction carrying 6 systems (2x380 kV, 
2x220 kV, 2x110 kV) and b) the resulting electric field  distribution. (All the 

three-phase current systems cany a rms. current of  1000 A; the pole is located at 
the co-ordinate x=Om, y=160m.) 

5.2.2.6 Comparison of  PMM and FEM Two efficient  methods of 
computing the electric and magnetic fields  below AC-high-voltage lines 
are demonstrated by an example; a Belgian 150 kV AC three-phase 
single system transmission line. Both methods, PMM and FEM, are 
compared with respect to accuracy and the required computational effort. 
To verify  the results of  the field  simulations, measurements of  a power 
line have been carried out, giving good agreement between computed and 
measured data. 

In the PMM model, infinitesimally  thin segmented filaments  of 
constant charge or current are approximating the slag of  the transmission 
line to solve the electrostatic and magnetic fields.  With reasonable 
accuracy a three dimensional field  distribution can be computed. 
Relatively low computation times are necessary to compute the three-
dimensional field  distribution below the power line with the PMM. 



www.manaraa.com

Using a standard PC-486/66, the calculation time lies in the range of 
seconds. 

With the fmite  element method, the distribution of  both electric and 
magnetic field  quantities, is computed as well. With respect to the high 
computational costs when compared to the PMM, a two-dimensional 
approach in the middle of  the span field  is chosen. Due to the necessary 
high discretisation of  the problem, the computational costs are in the 
range of  thirty minutes using a PC-486/66. Good agreement between 
measured data on the Belgian 150 kV line and calculated field 
distributions by both methods can be stated. 

The main problem employing the FEM is the small diameter of  the 
conductors above the large flat  conducting ground plane. The difference 
between the dimensions of  a conductor and the field  domain of  interest is 
huge, the ratio lying in the range of  some lO'. This causes the generation 
of  a large amount of  finite  elements and thus an enormous computation 
time, even for  the two-dimensional problem, when compared to the 
efforts  necessary for  the PMM. A three-dimensional FEM model is 
difficuh  to build, due to this huge difference  in geometrical dimensions. 

This example demonstrates that for  problem types, such as the high 
voltage line, the FEM is not very well suited. In this case, the approach 
using the PMM is the better choice with respect to computafional  time, 
problem dimension (2D/3D) and discretisation problems. 

5.2.2.7 Effects  of  fields  with low frequency  To evaluate the 
influence  of  the transmission line, it is not sufficient  to calculate the 
coupling impedances or capacitances of  the line. It is necessary to 
analyse the actually generated fields  in the neighbourhood of  the 
transmission line during the planning phase and to check if  given 
standards for  maximum field  values are violated. 

The interaction of  electromagnetic fields  with living organisms can 
be separated into two mechanisms, thermal and non-thermal interactions. 
Thermal interactions mean the mechanism of  the absorption of 
electromagnetic energy resulting in an increasing temperature. Non-
thermal are these interactions where the absorbed energy is not large 
enough to cause a significant  temperature rise. In fields  at low frequency, 
the body does not absorb or negligibly absorbs the wave energy. This 
implies that biological effects  caused by electric or magnetic fields  of 
low frequency  fields  are non-thermal. Observed non-thermal effects  on 
human beings can be the stimulation of  nerves, upright standing skin 
hair, visual disturbances ... . The possible results of  these effects  may 
depend on the field  characteristics which vary in intensity and frequency. 
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To judge the mentioned effects,  existing technical standards supply the 
quantities of  the electric, magnetic and electromagnetic fields  as a 
function  of  the frequency.  This is important, as the interaction of 
electromagnetic fields  and matter strongly depends on the frequency  of 
the considered field. 

Nowadays an increasing sensitivity to ecological problems can be 
stated. An injurious influence  to the health of  human beings caused by 
the direct effect  of  low frequency  electromagnetic fields  (50/60 Hz) is 
scientifically  not proven yet. For about twenty-five  years research efforts 
to find  a correlation mechanism between the field  quantities and their 
effects  on human beings have been going on, without significant  success. 
In this situation, the electric and magnetic field  quantities of  high-voltage 
lines have to be examined in order to avoid EMC problems with the 
environment close to the power transmission line while planning high 
voltage lines. 

A number of  standards such as those in preparation by the European 
Committee for  Electrotechnical Standardisation (CENELEC) are based 
on the known effects  for  short exposure times. Long term effects  are not 
considered. However, to consider possible as yet undiscovered effects  the 
values for  technical fields  are reduced by a factor.  In Table 5.2 the 
maximum exposure values for  the electric and magnetic field  are 
summarised. The values are distinguished according to the general public 
and professional  workers. 

Table 5.2. Maximum exposure values for  the electric and magnetic field 
(ICNIRP). 

exposure electric field  strength E magnetic flux  density B 
ky/m  (ims) mT  (rms) 

professionals: 
8 hours 10 0,5 
general public: 

5 0.) 
source: Health and Physics, April 1998, Vol.74, No. 4 

5,3 The numerical solution of  partial differential  equations 

Solving a differential  equation analytically or by semi-numerical 
techniques, as demonstrated before,  is only possible assuming 
simplifications  in the differential  equations that are valid in a domain that 
can be described in a plain mathematical way. Specific  boundary 
conditions and various material properties in different  domains make it 
difficult  to obtain an analytical solution for  problems of  technical 
importance. 
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The numerical approximation methods (Table 5.1) of  solving the 
introduced partial differential  equations are not limited to such specific 
geometries or other rough simplifications  and can handle different 
material characteristics with an acceptable accuracy in a single model. 
The two most important groups of  numerical methods are the finite 
difference  method and the projection methods. 

The finite  element method nowadays is the most important and most 
frequently  used approach solving variational problems and differential 
equations in engineering. The most significant  success of  this method is 
founded  in the possibility to develop on its base user-friendly  computer 
programs of  general application range. Due to its structured rules this is 
closely linked to the opportunity of  the FEM to generate stable numerical 
schemes for  considering complicated two- and three-dimensional 
geometries in a relatively simple way. 

Fig. 5.22. Overview of  various numerical methods. 

5.4 Finite difference  method 

The field  domain of  interest is discretised by a grid, where the grid-lines 
are in parallel to the co-ordinate axes. This type of  mesh is called an 
orthogonal grid and must not consist of  equidistant grid-points (Fig. 
5.23). The grid-distances hn, hs, hw and hw can be different. 

J 
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•v 

Fig. 5.23. Numerical discretisation for  the FDM. 
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x-d  " *+d 
Fig. 5.24. Approximation of  the potential distribution by a Taylor series. 

The potential distribution over the studied domain is approximated 
by the first  terms of  a Taylor series (Fig. 5.24): 

/(X  + £ / ) - / ( X ) = Z ' + N I X ) 
. ml 

(5.22) 

The differential  equation of  the particular field  problem is locally 
transferred  into a difference  equation. For example, calculating the value 
of  a potential distribution at point 0, by using the 4-point approach (Fig. 
5.23), and a grid distance d  with a derivative 

dx  " d 
(5.23) 

is expressed by a finite  difference  with a known approximation error 
rj{x).  By considering only the first  terms of  the Taylor series, this error 
is known and dependent on the grid distance. 

Forward, 

Sf  fix  ^d)-fix) 
dx  d 

backward 

^rfix) 

dx  d 

and central difference 

df  _f{x  + d)-fix-d) 
dx 2d 

+ i7(jc) 

(5.24) 

(5.25) 

(5.26) 

are used to assemble a system of  linear equations to calculate the 
potentials at all grid points. This leads to a large linear system of 
equations to be solved. The potentials at the mesh points represent the 
approximated field  solution. To obtain an accurate field  solution a fine 
discretisation is required. 



www.manaraa.com

5.5 Finite element method 

In general, differential  equations are hard to solve. The idea is to find  a 
solution for  the overall problem by substituting for  the complicated 
problem a series of  simpler ones. This means setting up the problem by a 
easily-solved linear system of  equations. 

Therefore,  the problem has to be discretised in adequate sub-
problems. The sub-problems are geometrically described by 
geometrically simple shaped elements such as triangles (Fig. 5.25) or 
rectangles for  two-dimensional and mainly tetrahedrons for  three-
dimensional problems. Other element shapes are possible as well. When 
comparing the meshes from  the FDM and the FEM model in Fig. 5.23, it 
is obvious that the FEM model approximates better the geometry of  the 
studied domain. A necessary local mesh adaptation is possible in this 
model as well. 

Fig. 5.25. Minimal triangular discretisation of  a two-dimensional fmite  element 
model. 

These elements, forming  the numerical discretisation, the mesh, are 
called the fmite  elements. On this discretisation, the problem describing 
differential  equation is locally approximated by simple basis function. 
The approximated overall solution is obtained by assembling all sub-
problems into a system of  equations and solving this. After  this 
procedure, the approximated potential solution is known in certain points 
of  the discretisation. 

The problem is to determine the field  describing potential functions 
for  the discrete problem, the finite  element equations, and to define  an 
adequate basis or shape function  to be able to assemble the overall system 
of  equations. Different  methods can be used to determine the finite 
element equation from  the differential  equation (Fig. 5.26). 

If  for  particular field  problems a variational principle is known, the 
discrete problem can be obtained by using the Ritz method. In this case, 
the generation of  the discrete problem is easy to obtain. Unfortunately, 
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this variational principle is not known for  every technical problem. In this 
case, for  instance, the very common method of  the weighted residues can 
be applied. The most important finite  element methods are: 

• various Ritz methods 
• variational method 
• weighted residual method (weak form  of  the governing 

equations) 
• different  types of  Galerkin method 
• approaches based on the energy-minimum functional. 

variational principle boundary problem 

variational approach 

RITZ method 

integral gauges 

residue method / integral gauges 

RITZ/GALERKIN 

discrete problem 
(systenj of equations) 

Fig. 5.26. The basic concept of  the finite  element. 

5.5.1 Variational approach 
In this section, it is assumed that a variational equation exists for  the 
studied field  problem. Therefore,  the generation of  the discrete problem is 
easy to obtain. 

A problem in the form: 
Find a function  u e V  ,so that for  all v e F 
aiu,v) = f(v) 

is called a variational problem. 
(5.27) 

With a(u,v)  is a real value depending on two functions  u,v EV, 
and F is a set of  differentiable  functions  in the field  domain Q with v=0 
on the boundary F .J(y)  is a linear form  on V. 

To determine the variational equation, a Poisson equation is chosen 
as an example, assuming the appropriate boundary conditions. 
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V̂ w = Aw = in O 
w = 0 on r 

with the Laplacian 
. ^^ V = A =—r + —r + (5.28) 

ax'  d/  dz'' 
and with q , a given continuous and u , a potential function. 

The differential  equation is multiplied with an arbitrary function 
vsV  and integrated over Q to obtain a linear form.  It can be written: 

- |(AM)  • vdQ.  = • vdQ.  . (5.29) 
n n 

The Gauss-integral gauge transfers  a volume integral J into a 

surface  integral 
^^J^  ^^^ 

•(—  + + —)dO.  = \Pdydz  + Qdzdx  + Rdxdy  . 
i dc  ^ ^  ? 

r is a closed and oriented surface,  which includes the domain Q. P, 
Q, R are functions  of  three variables defined  in Q. The partial derivative 
of  first  order from  P, Q, R must exist and must be continuous. With the 
approach: 

n ^ 
ox. 

„ du 
dy 

n ^ 
= V  = U  -V 

dz 

(5.30) 

and considering the boundary condition v = 0, the right hand side of  the 
Gauss integral gauge can be written by: 

0 0 0 

jPdydz+Qdzdx+Rdxdy  = ju^ •^dydz  + u^ -^dzdx  + u^ -J^dxdy  = 0 . 

To evaluate the left  side of  the Gauss gauge 

(Aw)-vi/a= ( — — ) d n 
a ^ ^ ^ 

(5.31) 

(5.32) 
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with the derived functions 

(5.33) 

dP  d  ,du  . at d^u  f — = — ( — v ) = + / , 
dx.  dx^dtx.  '  dx  dx,  de^ 

dQ  _d  ^ dv 
^ c^ ^ c^ dy  ' 

cR d  ^ du  dv 
— = — ( — v ) = , 
dz  di  ^ dz  di 

it can be written: 
.. dv  du  dv  du  dv.  _.. 

- |(A«) • ydO. = | ( — — + — + — — ¥ 0 . . (5.34) 
; i dx  dx  dy  dy  oz dz 

With this, the boundary problem described by a Poisson equation is 
transferred  into a variational equation. 

. . f,dudv  dudi  dudv.^.^  /c 
aiu,v)= , (5.35) 

i ok dx  ^ ^ ^ di 

f{v)=\q-vdO.  . (5.36) 

5.5.1.1 Discretisation of  the diflerentia!  equation The variational 
equation a(w,v) = / (v) is applied to the standard example of  a Poisson 
equation: 

r.dudv  At dv  dudv.j^ 
a dx  dx  c^ cy dz  dz 

f{v)=\qvdQ.  . 
a 

Wi, ..., >VN are N independent linear functions  out of  K, and Fh is the 
set of  linear combinations ^cyv^. Fh is cailled the A'-dimensional partial 

i-i 
space from  V, and w, are the basis- or global shape functions  (Goering et 
a l . , Zienkiewicz & Taylor 

An approximated solution from  a(u,v)  = / (v) is a function  u. e F,. 
The idea now is to find  an approximated solution Uh , using the linear 
combination of  the N functions 

u,=±u,w, (5.37) 
f-l 

with the unknown ui. 
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This yields the formulation  of  an equivalent problem: 
= for  all v .eF. . (5.38) 

This is a projection of  the problem a{u,v)  = / (v) in V  into a 
problem in Fj,. If  this is true for  all u^eV^, and for  all w e V̂  it can be 
written: 

= J = m N . • (5.39) 
Equations (5.38) and (5.39) are equivalent problems and are called 

the discrete problems. 

5.5.1.2 Practical considerations Equation (5.38) was the starting point 
of  the theoretical considerations of  the FEM. The initial position for  the 
practical calculation of  the approximation «h is eq.(5.39). Using 
w, = ^«.w, and substituting in the discrete problem, 

J.1 

= J  = l(l)N  , (5.40) 

assuming a being a bi-linear form  it can be written: 
y = I(l)A^ . (5.41) 

M 
This represents a system of  N equations with the N unknown u, and 

the coefficient  matrix Ah. 

(5.42) 
with â  = 

The discrete problem corresponds to a system of  equations. Using 
the shape functions  Wi to calculate the elements of  the coefficient  matrix 

and the right hand side of  /(w,) and solving the system of 
equations (5.41) leads to the unknown w,. Evaluating eq.(5.37) gives the 
approximation of  the problem w, . The practical realisation of 

the FEM depends strongly on the choice of  the shape fnnctions  Wj. The 
basis functions  must have some particular properties. 
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5.5.2 Shape or basis function 
The definition  of  the shape or basis functions  is not dependent on the 
single FEM. The same ideas used to construct the basis functions  can be 
taken for  the weighted residual methods, the Ritz methods, the different 
Galerkin approaches, the method usmg a variational equation and the 
energy minimum fimctional  as well. The following  ideas are of  a general 
application. 

If  the approximation û  from  u must be very accurate, the number N 
of  the basis functions  must be very high. This results in a large system of 
equations. This is the reason why the basis functions  must be chosen in 
such a way that the coefficient  matrix A), contains as much as possible of 
zero elements. The best possibility would be to choose the shape 
functions  such that Aj, is the unity-matrix. This is not practically possible. 

In general Ojj is an integral over the domain Q of  summations of 
products of  the Wj and wj and their derivatives. If  the shape functions  are 
chosen such that they are only in a partial domain Q; of  Q non-zero and 
else equal to zero, the products Wj-Wj i, j=l(l)N are only for  some 
combinations of  t and j non-zero. This means for  a FEM discretisation 
that for  many i and J  , ii; and Qj should not have common nodes. This 
results in the desired sparse system of  equations. 
The requirements to be fulfilled  by the shape functions  are: 

• smoothness, piece-wise differentiable 
• additional properties resulting from  the boundary conditions 

must be satisfied 
• the shape functions  should be simple 
• a good approximation from  u should be obtained. 

5.5.2.1 Construction of  the basis functions  To construct a useful  shape 
function,  (Goering et al. the unit square (Fig. 5.27) is discretised into 
partial squares with the co-ordinates = vh and = fjh  with v, 
H=1(1)M-1 andMA=l . 

y 
Q 

/ / / 
/ S AA 

/ y / h 

/ / / / 4 » 

Fig. 5.27. Unit square with triangular FEM discretisation. 
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In this example, triangular-shaped elements are assumed, and so 
every partial square is represented by two triangular elements (Fig. 5.27). 
Vh is the ( A Í - 1 ) ' - d i m e n s i o n a l space characterised by a linear 
function  in x and y inside each triangle. 

The shape functions  w^{x,y)  in Vh  are chosen in such a way that 
one node of  the triangle has the function  value 1 and the other two nodes 
a zero value (Fig. 5.28): 

1 for  k = v, l = p 
0 else 

Therefore,  it is 

(5.43) 

(5.44) 

5.28). 

Fig. 5.28. Simple linear shape function  w^{x,y). 

î vii is the desired partial domain in which Wv̂  is non-zero (Fig. 

For example triangle 1 can be written: 
1, X = y=y. 
0, x = (5.45) 
0, x = x .̂ 

Now the shape fianctions  from  the triangles 1, 2, ..., 6 are considered 
together. If  the linear function 

"^r^^d^+d^x + d^y (5.46) 
is applied, the requirements for  the triangular regions (5.45) result in a 
system of  equations. 

Q = , (5.47) 

In terms of  matrix representation: 
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\ ' n 

1 - 0 

y^J k J . o j 

(5.48) 

The solution of  this system of  equations yields di=0 , A.2=\lh and 
do=l-M.. The value of  the shape function  for  all triangles can be given by: 

-M) :triangle] 

•p) iriangle2 

iriangleS 

-M) :triangle4 

:triangle 5 

-V) :triangle 6 . 

(5.49) 

Fig. 5.29 illustrates the properties of  the shape function  introduced. 
Wv̂  is a simple Imear shape function  with the desired properties. It fulfils 
the conditions 

= 0 if |v-A|>l  or (5.50) 
Q 

to generate a sparse overall coefficient  matrix. 
y 

Fig. 5.29. Properties of  the approximation applying linear shape functions. 

Various basis functions  of  higher order such as quadratic, cubic etc. 
are possible and in common use, for  example 

linear: 
, (5.51) 

quadratic: 
w =d^+d,x  + d,y  + d^x'  + dy  + d,xy  etc. (5.52) 
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The degree of  freedom  (DOF) per fmite  element for  a chosen basis 
function  can be determined by (Kost 

polynomial TOFjd DOFJD 
degree of  p 

(p + l)(p + 2) {p + l)(p + 2)(p + 3) 

2 6 
I 3 4 
2 6 10 
3 10 20 
4 15 35 
5 21 56 

Using polynomials of  higher order generates a more accurate 
approximation of  the exact solution. The DOF increases with rising order 
of  the polynomial and this means that the computational expenses are 
increasing as well. 

From the properties of  the basis functions,  general conclusions on 
the properties of  the mesh discretising the domain Q can be given. A 
mesh must consist of: 

• non-overlapping elements 
• nodes, corresponding to the nodes of  an adjacent element (for 

node elements). 

a) 
not coiTcsponding node 

b) 

Fig. 5.30. a) Regular and b) not regular triangular element mesh. 

5.5.3 Basic principle of  the FEM 
Three steps determine the basic principle of  the FEM: 

• Choose N shape functions  Wj such that wi is only in a partial 
region Qj from  the domain Q non-zero. 
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• Calculate the ay and f̂  and solve the system of  equations to 
obtain w; . 

j=l(l)N . (5.53) 
f-i 

• The approximated solution from  a{u,v)  = f  (v) is 
. (5.54) 

f-l 

5.5.4 Weighted residuals 
With the exact solution « of  a boundary problem it can be written 

a(«,v)-/(v) = 0 . (5.55) 
The solution of  the problem obtained by an approximation 

û  = ¿w.w, is not exact and we must consider a residual R. 

« ( « . v j - / ( v j = ii . (5.56) 
Assuming that the basis functions  Wj satisfy  the boundary 

conditions, in the example it was v=0 on F, the N unknown can be 
determined by choosing N points inside the domain H. For these points, 
the residuum is forced  to be zero. Out of  this, N equations to determine wj 
are obtained. This method is called the point-collocation method (Binns 
etal. 

A better approximation is obtained by averaging with an arbitrary 
function  G), over the domain of  interest i i . 

¡{a{u„co,)-no>,))dQ=  ¡Roi,dQ  = 0 . (5.57) 
n o 

Transferred  to the example of  a Poisson equation Au = -q, this 
method yields: 

j(Au. + q)o}, • i/Q = J/to, • JQ = 0 (5.58) 
O D 

The method is called the method of  weighted residuals. 
Various weighting functions  are in common use. Using, for  example, the 
Dirac-Delta function  for  fij,  results in the point-collocation method as a 
special case of  the mediod of  the weighted residuals. Usually linear 
weighting functions  are chosen. They are easier to implement when 
compared to higher order functions  and already deliver a sufficiently 
accurate approximation. 

By choosing the shape functions,  introduced in the last section, to be 
the weighting functions, 

, (5.59) 
we obtain the local Galerkin method. The combination of  weighted 
residuals and Galerkin method is universal applicable. 
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5.5.4.1 Continuity Particular attention must be paid to the choice of 
basis function  where the second derivative is present in the differential 
equation. This might cause difficulties  with the integral at element 
boundaries. To avoid singular integrands, a continuous function  must be 
chosen whh continuous first  derivative. This leads to the requirement of  a 
defined  continuity for  the form  functions. 

If  only the continuity of  the linear form  fimction  is required, we 
have a C°-continuity, 

M w ) 
dn 

(5.60) 

is continuous on the element's boundaries. 
For a function  of  second order, the derivative at the element's 

boundary is continuous (Fig. 5.31). If  in general C®-continuity is required 
it can be written: 

d'u{x,y,z) 
dn 

(5.61) 

Uixj U[x) 

el 02 
a) b) 

Fig. 5.31, 8)0°-and b)C' continuity for  the solution u^xj considered at the 
boundary from  fmite  element el and e2. 

5.5.4.2 Green's formula  We have seen so far  that we would need a C' 
continuity for  the basis functions  to solve the example of  a Poisson 
equation. It is desirable to have simple linear basis functions  with C" 
continuity. Applying the first  Green's formula: 

JPAg=  ¡F—QdT-fyPVe  • do. 
0 r on a 

removes the second derivative in the equation and yields for: 

(5.62) 
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fi»,  Au, • dO.  = fiw,  —M.  • dT  - iV<y Vu. dO.  , (5.63) 
Q r dn  5 

This leads to the weak form  of  the Poisson equation. Weak form 
means that weak requirements concerning the continuity are demanded 
on their solution when compared to the solution of  the previous 
differential  equation. Therefore,  the form  of  the previous differential 
equation is called strong. 
[(Am,  + q)£0_ • dQ  = fVi»  Vh. dil-  ¡ca^q dn-  ¡O), —u, dT^O  . (5.64) 

o o n r dn 
As desired, a C" continuity of  the basis fiinction  is now sufficient  to 

solve the problem. A little disadvantage of  this approach is the fact  that 
now the weighting function  © must have C" continuity as well. Constant 
weighting functions  are not possible with this approach. The use of  the 
first  Green's formula  reduces the continuity requirements of  the basis 
functions  but increases efforts  concerning the weighting functions. 

It is obvious from  this approach, that the solution of  the strong form 
is always a solution of  the weak form.  The other way around, this does 
not always hold. 

5.5.5 Energy-minimum functional 
The principle of  minimum energy requires that the potential distribution 
corresponds to the minimum of  stored field  energy. For several 
electrotechnical problems, this equivalent minimisation problem is 
known. 

FiuJ  = i VJ'  • dO.  - | / ( v j • dO  min. (5.65) 
Z il o 

The quantity F(M,) is the total energy of  the function  u^x), which 

is the sum of  the internal energy — \a{u^,vy -dQ, and the load potential 
2 a 

~ /(vJ-isfQ.  The minimum energy functional  yields the same results 
n 

obtained by the local Galerkin method (Kost®', Eriksson et al.̂ ®). 
5.5.6 Types of  elements 
The domain of  interest can be discretised by various types of  finite 
elements. In this section the most commonly used element types for  two-
and three-dimensional FEM meshes will be introduced. It is the aim to 
use simple geometries for  the elements. Cross-sectional elements such as 
triangles, quadrangles and rectangles are used for  two-dimensional 
models and volume elements such as tetrahedrons and cuboids for  the 
three-dimensional FEM models. 
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Table 5.3. Standard FEM element types. 

2D 3D 

/ / 
7 X 7 

The outer boundaries of  the geometries are mainly approximated by 
a polygon. In general triangular or tetrahedral shapes can best 
approximate such geometries. A complicated geometry can be 
approximated by a large number of  such simple-shaped elements. 

The FEM model can be built up with element types with different 
properties. Nodal and edge elements can be distinguished. The most 
common types of  elements will be briefly  introduced in the next section. 
For further  details on special types such as non-conform  elements, please 
refer  to the literature (Goering et al. Eriksson et al. Kost Binns et 
al. Line elements are not considered here. 

5.5.6.1 Nodal elements The triangular nodal element is the most 
commonly used element type for  two-dimensional problem formulations. 
This element shape is the most adaptable to complicated geometries. 
Therefore,  it has advantages concerning an adaptive local mesh 
refinement  to enhance the quality of  the approximated solution. 

Fig. 5.32.2D triangular nodal element with linear shape function. 

The unknown values of  the approximated fimction  are defined  at the 
nodes of  element. By using first  order basis functions,  w, equals 1 at one 
node of  the domain and 0 at the other two nodes of  the triangular sub-
domain n, (Fig. 5.32). 
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w]" + . (5.66) 
The equivalent element type for  three-dimensional models is the 

nodal tetrahedron with the same advantage of  being able to adapt 
complicated geometries very accurately. 

w]" =d^  + d,x  + d,y  + d,z  . (5.67) 

5.5.6.2 Edge elements By using edge elements, the unknowns are 
referred  to the edges of  this element type. This is advantageous in three-
dimensional problem definitions.  Therefore,  this type of  element is in 
common use ifor  three-dimensional FEM problems. 

The basis functions  w/ are defined  by: 
w ' - w . V w , . (5.68) 
For a three-dimensional element the course of  the basis function  of 

an edge element is plotted in Fig. 5.33. 

Fig. 5.33. First order three-dimensional edge element. 

5.5.6.3 Facet elements The basis functions  w' are defined  by: 
w^ - 2(>i', Vw^ X + Vw X Vw, + w Vw, x ) (5.69) 

Fig. 5.34. First order three-dimensional facet  element. 
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Fig. 5.34 shows the course of  a linear basis function  of  a three-
dimensional facet  element. The function  value in one node is zero, The 
course of  the basis function  value is linear between the nodes of  the 
tetrahedron. 

5.5.6.4 FEM element properties The basis functions  w'", , w' and 
w' own special properties (Table 5.4). 

Table 5.4. Properties of  finite  elements.g 

type element properties 

w 

W 

the value of  the basis function  at a node is 1 at the node n and 0 at 
all other nodes 
the value of  the line integral over an edge is 1 at the edge e and 0 
at all other edges 
the value of  the surface  integral over a facet  is 1 in the plane f 
and 0 at all other planes 

5.6 Material modelling 

In this section the most important material models such as permanent 
magnet and non-linear ferromagnetic  materials are introduced. 

5.6.1 Non-linear material 
Most of  the electromagnetic field  problems are inherently non-linear. 
Having accurate numerical techniques able to handle non-linearities 
strengthens the trend to have problems out of  this class because material 
costs and a desired minimisation of  the devices force  the exploitation of 
material to its limits. As a consequence mainly highly saturated magnetic 
circuits have to be analysed. 

Fig. 5.35. Hysteresis loops and magnetisation characteristic (Salon "). 
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The analysis of  magnetic devices requires knowledge of  the physical 
properties of  the materials used. Slowly magnetising a piece of 
ferromagnetic  material to a value Hi and then reducing the field  until it 
reaches -Hi , and repeating the process until the characteristic remains the 
same, yields a hysteresis loop (Fig. 5.35). If  the field  is increased to a 
value H2 and the process is repeated, and then to Hj, etc., a family  of 
nested hysteresis loops is obtained as shown in (Fig. 5.35). The connected 
tips of  the hysteresis characteristics represent the normal magnetisation 
characteristic. This curve is most commonly used in the finite  element 
analysis to represent the non-linear properties of  ferromagnetic  materials. 
Using soft  magnetic materials, the curve is narrow and thus an acceptable 
approximation of  the real behaviour of  the material. Here, only non-
hysteretic materials are discussed. Manufacturers  having different  grades 
normally deliver the material characteristics by B-H curves (Fig. 5.36). 

I 

250O 
Mognelic field  1H|, unp/m 

5000 

Fig. 5.36. Magnetisation characteristic in BH-form. 

The basic principles of  the linear finite  element analysis carry over 
to non-linear problems abnost without modification.  As always, a 
stationary functional  is constructed and discretised over finite  elements. 
As might be expected, the equations resulting from  non-linear problems 
are non-linear as well. They can be solved by several different  methods. 
Simple iterative methods are not always stable and can take a long time to 
converge. A more corrunon approach is to use Newton iterations. 

In order to extend the linear fmite  element procedure to include non-
linear material properties, a mathematical model describing the magnetic 
properties of  the material is recommended. Therefore,  computer readable 
files  of  material properties must be maintained ready for  use. Numerous 
ways of  modelling magnetic property curves have been tried out: 
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• reluctivity as a function  of  flux  density squared, u = u(B^) 
• field  as a function  of  flux  density, H  = H{B) 
• permeability as a function  of  field  squared, fi  = 
• permeability as a function  of  flux  density, // = fi{B). 
The Newton method is the reason for  using squared values of  the 

independent variables B or H, rather than magnitudes. The variables are 
usually derived from  potentials in vector component form,  so that finding 
the magnitude involves first  finding  the squares of  the components and 
then extracting the square root of  their sum. Using the Newton method 
the Jacobian matrix can be evaluated in the form: 

• (5-70) SU.dU^  ^dUW 2 dUW. IdB^dU^dU^ 
Therefore,  the classical B-H characteristic is not the best choice to 

introduce ferromagnetic  material properties in finite  element software.  In 
the most conmion program designs the o = ) representation is 
employed. 

0.00J 

0.004 

I 
K s 

0.003 

0.002 

0.001 

0.000 
1 2 

SqusKd flux  density |Bj'. (lali)' 

Fig. 5.37. Magnetisation characteristic in vB^ form. 

The range of  the u = u(B^)  material characteristic is 
subdivided into segments. The data samples v, B^ are tabulated in an 
ASCII file  readable by the finite  element program. For the points between 
the given data an interpolation scheme has to be chosen. In the simplest 
case a linear approximation could be chosen. The ferromagnetic 
characteristic would then be represented by a polygon. This 
approximation would be discontinuous in the points of  the given data 
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sample. However, the Newton iteration recommends a continuous 
function.  Therefore,  the values between the single data sample are usually 
approximated by cubic spline-interpolating polynomials. For all points 
beyond the range of  available data the curve can be extrapolated linearly. 

5.6.1.1 Cubic spline interpolation Splines are curves to approximate 
functions.  Cubic splines in particular have received much attention in 
numerical analysis in the past, replacing other polynomial and 
exponential approximations. The main reason for  the interest in splines is 
that they result in a simple formulation.  They interpolate exactly at the 
given data points and have a continuous first  and second order derivative. 
The continuous first  derivative makes the method suitable for  the Newton 
iteration. 

Assume a function  x=x(y) to be interpolated by cubic splines in the 
interval [a, b]. 

Given a tabulated function  yj=y(Xi) , i=l(l)n with x arranged in 
monotone way. 

a = xi < X 2 < . . . < X n = b . (5.71) 
The spline interpolating polynomial is called S(x) with properties: 
• S(x) is two times continuous by differentiable  in [a, b]. 
• S(x) is in every interval [Xj, Xi+i] given by a cubic polynomial. 
• The points of  S(xi) are yi(xi). 
• As a boundary condition it is taken that y'=y"  = Q in order to 

obtain a so called natural spline. 
Using the approach 
5(jc) = = a,y, + + , (5.72) 

the coefficients  can be calculated by applying: 

o, = > 
(5.73) 

o 
The first  derivative with respect to x of  the interpolating function  is: 

= (5.74) 
dx dx 6 ' 6 ' 

while the second is: 
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= = . (5.75) 

With this, the requirement of  continuity of  the second derivative 
over the boundaries of  the interval [Xj.i , Xj] and [x; , Xf+i}  is satisfied. 
Because of  a required continuous derivative of  first  order of  the 
interpolating spline function,  the values of  dS/dx at the point x = x, for 

and Jce must be equal.'Employing x = X; for  both 
intervals yields: 

X.  - x . 
+ = • (5-76) 

This equation can be evaluated with i=2(l)n-l for  every interval. 
This results in n-2 linear independent equations for  the n unknown y", 
i=l(l)n at the given data samples. Using the conditions of  a natural spline 

= yields two additional constraints. This is a symmetric tri-
diagonal system of  equations and is easy to solve. With the derivatives 
known, the coefficients  of  the interpolating spline function  are now 
determined. 

A great advantage of  using cubic splines is the fact  that this linear 
system of  equations has to be solved only once to obtain the values of  the 
second derivative. Therefore,  space for  the solution of  dimension n has to 
be allocated in the memoiy of  the computer only. For the finite  element 
method this means that this system of  equation has to be solved only once 
independently of  the number of  finite  elements used in the model of  the 
magnetic circuit. For the practical use of  the method a field  of  20-25 data 
samples is sufficient  to represent a non-linear ferromagnetic  material 
characteristic. 

The non-linear material characteristics are normally delivered by the 
manufacturer  in a B=B(H) form.  The data can be given in a tabular or a 
graphical form.  This implies that the user of  finite  element software  takes 
the values and rearranges them into the appropriate o = u(B^) 
representation. Converting the given data sample in this way may lead to 
numerical difficulties.  To ensure stable convergence and the highest 
possible computational speed of  the Newton iteration, particular attention 
has to be paid to the numerical representation of  the data samples. The 
curve representation has to fulfil  some numerical requirements. The 
function  u = (j(5') has to be monotonie. If  the characteristic is not 
monotonie, the derivative changes sign, eventually leading to slow or 
even to non-convergence of  the iteration scheme. A possible way to 
overcome this problem lies in the optimisation of  the given data samples. 
Here, a numerical optimisation algorithm can change the values of  the 
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given points to ensure a monotonie behaviour of  the characteristic. After 
optimisation a technically pure curve is constructed. 

5.6.2 Permanent magnets 
The development of  high energy permanent magnet materials such as 
SmCo and NdFeB grades has led to increased interest in the use of 
permanent magnet material in electrical machines and actuators. The 
representation of  these hard magnetic materials is difficult  and the subject 
of  ongoing research. As mentioned in the last section, ferromagnetic 
materials are characterised by a narrow hysteresis loop. In contrast, hard 
magnetic materials such as permanent magnets exhibit wide loops. It is 
often  acceptable to consider the magnetic characteristic of  a permanent 
magnet by a straight line in the second quadrant of  the hysteresis loop. 
This is not a limitation of  the finite  element method. During the design of 
permanent magnet excited devices, particular attention must be paid to 
the operating temperature of  the magnets. 

The intersection of  the hysteresis loop with the ordinate is called the 
residual or remanence flux  density BR. The intersection of  the abscissa 
and the loop is called the coercive force  He. 

There are two possibilities allowing the modelling of  a permanent 
magnet material: 

• magnetisation model 
• current sheet approach. 
Although these two methods have a different  starting point, they 

both result in the same set of  equations. Assuming a straight line as the 
characteristic of  the permanent magnet material (Fig. 5.38), there are only 
two parameters required to define  the characteristic: 

• the slope of  the line /i^ and 
• the y-axis intercept BR. 

'PM 

Hi Hf H 
-H 

PM 

Fig. 5.38. Definition  of  permanent magnet material. 
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In Table 5.5 the most important permanent magnet properties are 
collected. During a design of  a device excited by permanent magnets, 
particular attention has to be paid to the temperature dependence of  the 
grade used. 

-1000 kA/m -Ban 

Fig. 5.39. Demagnetisation characteristics for  different  permanent magnet 
material at room temperature 20° C. 

Table 5.5. Properties of  different  permanent magnet material at room 
temperature. 

SmCo NdFeB NdFeB AINiCo Ferrile 
VACOMAX Alpha Magnet VACODVM KOERZIT KOEROX 

25SHR MQl 400 HR 700 400 
B, T I.Oa... I.I5 0.63 1.03... 1.13 1.35 0.4 
He kA/m 600... 900 380 770 ,., 900 58 255 

(BH)_ kJ/m' 190... 240 75 210... 265 62.1 31 
M. • <1.1 1.13 <1.1 1.5 ...3.0 l.I 

RTC(B,) WK -0.03 ,.. -0.035 -O.IS -0,12 -0.02 -0.2 
RTC(Hc) WK -0,2... .0.3 -0.5 ,...0.65 -0.5 ... -0 63 -0.03 ... -0.07 +0.3... +0.5 

Tc -c 800 310 310 790 ...900 450 
T_. "C 300 ISO 125 500 323 
H - kA/m 3300 2S00 2500 280 1000 
P g/cin' 8.4 6,0 7.4 7.3 4.9 

Typical demagnetisation characteristics of  different  grades are shown in 
Fig. 5.39. 

5.6.2.1 Magnetic vector model The demagnetisation characteristic is 
defined  by 

^^/^oiO + Z J H + M} (5.77) 
where Xm i® magnetic susceptibility, M the magnetisation vector and 
H the field  strength at the operating point AP. In terms of  the remanent 
flux  density 
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. (5.78) 
The incremental permeability, the slope of  the demagnetisation 

characteristic, is 

âU 
(5.79) 

is a very small positive number so that the apparent 
permeability of  the magnet is only slightly larger than that of  the free 
space (Table 5.5). 

The reluctivity is defined  as 
1 

v = - (5.80) 

applying to the demagnetisation characteristic, yields 
H = v(B-// ,M) . (5.81) 
Using the Maxwell equation for  a magneto static problem 
V x H = J (5.82) 

yields 
Vx(t«) = J + Vx(i//^„M) (5.83) 
The second term, the magnetic vector, on the right-hand side 

represents a source term and can be identified  as an equivalent magnetic 
current. 

5.6.2.2 Current sheet approach Using an equivalent current sheet 
representing the permanent magnet material is an easy way to introduce 
the material properties in a finite  element program. In its original form  it 
is not easy to apply permanent magnets with an odd shape. However, if 
the model is extended, an arbitrary shaped magnet can be described. In 
the following  section a linear demagnetisation characteristic of  the 
material is assumed. 

b) 
Fig. 5.40. Idealised magnetic core excited a) by a permanent magnet and b) by i 

current sheet. 
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Taking tlie permeability of  the iron core in Fig. 5.40 to be infinite, 
Ampere's law yields 

H J + H,5 = ^ . (5.84) 
Now, for  a uniform  B, it can be written (H is negative) 

5 = . (5.85) 

The intersection between the air gap characteristic, the load line, and 
the demagnetisation curve represents the point AP of  the magnet material 
used (Fig. 5.38) with 

B = + = . (5.86) 

The permanent magnet in Fig. 5.38 can now be represented as a 
current sheet with the total ampere-turns NI  = H/  and a material of 

equivalent permeability p = (Fig. 5.38). 

Again 
assuming an infinite  permeability of  the iron parts of  the 

magnetic core, 
HJ  + H,=HJ  . (5.87) 
This yields 

+ . (5.88) 

All magnetic quantities outside the magnet remain the same as in the 
case of  the magnetic vector, but are shifted  to the first  quadrant of  the 
magnetisation characteristic. 

This method is easy to implement for  rectangular magnets with a 
magnetisation parallel to two sides of  the rectangle (Fig. 5.41). 

® t Q 
M 

Fig. 5.41. Triangular finite  element with magnetisation. 
These ideas now can be transferred  to permanent magnets with an 

arbitrary shape. Therefore,  current sheets are assumed on all sides of  the 
fmite  element. After  some elementary trigonometrically manipulations it 
can be written 
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, (5.89) 

with 

• (5.90) 

In a similar way the cj, bj, Ck and bk are calculated. With the 
equivalent magnetisation vector 

M = (5.91) 
the currents are 

. (5.92) 

The other edge currents can be calculated in a analogue way Ij. This 
procedure applied on an element by element base enables the 
construction of  arbitrary shaped permanent magnet material. 

5.7 Numerical implementation of  the F£M 

In this section, the theoretically derived abstract knowledge of  the fmite 
element method will be practically applied to magnetostatic ñeld 
problems. Standard linear triangular fmite  elements will be used. The 
system of  equations will be derived using the energy minimum 
functional. 

Starting whh the numerical solution of  the Laplace equation in two 
dimensions, then introducing impressed currents and permanent magnet 
material, the difficulties  programming a FEM code will be introduced and 
treated. Reading this section should enable the reader to obtain an 
understanding of  the practical realization of  the method in a computer 
program. 

5.7.1 Laplace's equation 
For simplicity in this example of  the implementation of  the FEM, a two-
dimensional approach is considered. A Cartesian co-ordinate system is 
assumed. In a two-dimensional field  the electrical field  strength consists 
of  one component in the z-direction only and the magnetic fields  are in 
the xy-plane. 
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U = (5.93) 

The vector potential A and the current density J have a component 
only in the z-direction. For reasons of  simplicity the index, z, to indicate 
the direction, will not be written in the following, 

A = = ^ (5 94) 

The static magnetic field  in terms of  the vector potential is given by 
the A-formulation  of  Laplace's equation: 

= 0 . (5.95) 
At this moment air is considered as material. Using the energy 

minimum functional 

2 D 
(5.96) 

For a complete problem definition  a magnetic flux  has to be 
imposed by applying the appropriate Dirichlet conditions at the 
boundaries of  the field  domain of  interest. 

5.7.1.1 Linear basis function  The problem region is discretised by 
triangular node elements. The vector potential is approximated by linear 
shape functions.  By connecting all triangular elements at their nodes and 
forcing  the node potential to be equal, the magnetic vector potential 
becomes continuous over the defined  field  region. Linear shape ftinctions 
are applied by using: 

A = a + bx + cy . (5.97) 
The coefficients  a, b and c are found  from  the values of  the 

magnetic vector potential A\, A2 and A^  at the three nodes of  an element 
(Fig. 5.42). 

(5.98) 
'A a 

A = 1 y^ b 

A . 1 c 

(̂ i.yi) 

to.«) 

Fig. 5.42. Triangular finite  element. 
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"1 ' A 

A = [i  X  y 1 A 

_1 A . 

The magnetic vector potential whhin an element is: 

(5.99) 

Using the shape functions,  the magnetic vector potential is 
approximated by: 

A = ±A,N,{x,y)  (5.100) 

with 

2A. 

2A. 

(5.101) 

(5.102) 

The shape functions  N2 en N-i are found  by cyclic permutation of  the 
indices in (5.101) and (5.102). The area A, of  an element is: 

1 1 P 
A, ( y , + k - ^ J j ' J ^ ^ e t 1 ŷ  ,(5.103) 

[1 Jij 73. 
It is easy to verify  that the three shape functions  are one at one node 

and zero at both other nodes. 
/ . ¡ 0 V i ^ j 

(5.104) 

5.7.1.2 Functional within an element The gradient of  the magnetic 
vector potential in terms of  the shape functions  can be calculated by: 

VA = Y,A,VN, . (5.105) 
/.I 

Substituting (5.105) into the functional  within an element gives 
J|V.4fdn  , (5.106) 

2 /.I 

The elements of  the 3 x 3 element matrix K'*' are 

(5.107) 

(5.108) 
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In a matrix-vector notation, the functional  within an element is: 

^ •stamp' 
(5.109) 

5.7.1.3 Assembling all elements The overall functional  is found  as the 
sum of  the functionals  within the elements. 

F - X ^ w , (5.110) 

F = . (5.111) 

Summation is practically done element by element. The element 
matrix K'*' is calculated for  each finite  element and added to the already 
existing coefficient  matrix K.  For the two finite  elements in Fig. 5.43 this 
yields: 

Kf}  ' 

K\ 
Ml J A'L 

'•21 I 
I 

22 

iCi' I K^i^Kf^ 
0 ] 

••ii 

Tk^} 

(5.112) 

'21 -"-71 I -"-il 
Two elements combined with each other have four  nodes, i.e. the 

coefficient  matrix Jf  becomes a 4 x 4 matrix. 

Fig, 5,43, Joining two fmite  elements. 

5.7.1.4 The system of  equation The system of  linear equations is 
found  by forcing  the partial derivatives with respect to all unknowns to be 
zero. This is in fact  an energy minimisation. 

f  = 0 V . . (5.1,3) 

Applying Dirichlet conditions at boundaries is fixing  the magnetic 
vector potential at some prescribed values. Two groups of  nodes can be 
distinguished: nodes with free  potentials that are to vary (index f)  and 
nodes with prescribed potential values (index p). The node numbering is 
such that all nodes with potentials that are free  to vary are numbered first. 
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F = -
2 

A'' A'' 

K  K 

A / 
A, . 

A / 

L ^ J 
= 0 

(5.114) 

= 0 , (5.115) 

(5.116) 

o" 
0 I A.. . A, _ 

Applying the boundary conditions, the system of  linear equations 
becomes: 

(5.117) 

The generated coefficient  matrix owns some interesting properties: 
• Sparse, Ky  is different  from  zero only if  node i and j are 

connected by an element. 
• The matrix is symmetric Ky  = Kp  diagonal dominant and 

positive definite. 
The assembly of  the matrix is straightforward  and is done element 

by element (Fig. 5.44). 

Fig. 5.44. Assembling of  the coefficient  matrix and the right hand side. 
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5.7.1.5 Material properties Laplace's equation in two dimensions is 
given by 

V-(i^Vyi) = 0 . (5.118) 
With the reluctivity, respectively permeability and their relative 

values, index r, v = v • = — = —1—, characterizing the ferromagnetic 
M 

properties of  the material used. Due to numerical reasons the relative 
reluctivity v̂  is used: 

V-(i/,V^) = 0 . (5.119) 
The functional  is: 

= . (5.120) 
2 o 

and is valid for  magnetostatic problems with different  materials and 
where only Dirichlet and Neumann conditions are applied. 

5.7.1.5.1 Functional within an element The functional  within an 
element becomes: 

, (5.121) 

= ^ ¿ ¿ 4 • fViV.  -ViV^ ^ • (5.122) 
<-i /"I 4 

The elements of  the element matrix K'"' are given by 

. (5.123) 

5.7.2 Poisson's equation 
Poisson's equation in two dimensions is given by: 

= (5.124) 
or due to numerical reasons 

= . (5.125) 

The functional  is 

^ 1 J  A 
VA d n , (5.126) 
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and is valid for  magnetostatic problems with different  materials and given 
current densities. Dirichlet and Neumann conditions can be imposed at 
the boundaries. 

5.7.2.1 Functional within an element The functional  within an 
element becomes 

VA  -2 dQ 

The evaluation of  the second term gives: 

(5.127) 

(5.128) 

In matrix-vector notation, the functional  within an element is 

2 
The elements of  the source vector T'*' are found  as 

Vo 3 

(5.129) 

(5.130) 

5.7.2.2 Solution of  Poisson's equation The system of  linear equation 
is found  by forcing  the partial derivatives with respect to all unknowns to 
be zero. 

(5.131) "A/ 
0 I A . 

5.7.3 Permanent magnet material 
It is assumed that the demagnetisation characteristic in the second 
quadrant of  the magnetisation curve of  the considered magnet material is 
linear (Fig. 5.45). This assumption is realistic for  most of  the modem rare 
earth magnets such as the grades of  NdFeB, SmCo or the Strontium or 
Barium Ferrites. The permanent magnet is characterised by its remanence 
flux  density B̂  and its coercive force  H .̂ With the known material 

equation B = ¡jH  the reversible permeability p. = — can be 

determined. Linear permanent magnets are described by: 
B = + . (5.132) 

This results in an extra exciting term in the differential  equation and in 
the functional. 
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He 

Fig, 5.45, Demagnetisation characteristic of  a linear permanent magnet. 

V.(vV^) = ̂ 4 - V ( v „ b J , (5.133) 

d n g , (5.134) 

with 
B e +B e 

r rt X  rv V 
(5,135) 

This functional  is valid for  magnetostatic problems where a 
magnetic field  is imposed by currents and permanent magnets. 

5.7.3.1 Functional within an element The third term in the functional 
within an element becomes 

i* . ^ 
4 , i-t 4, 

Applying Green's formula  gives: 
[  ac ^ ) 

d a 

A, 
d a 

2 
This results in an additional term in the source vector T'*' . 

y(-) A v<'', r'"' =. 
v„ 3 

— + -

(5.136) 

(5.137) 

(5.138) 

(5.139) 

5.7.3.2 Radial magnetisation The direction of  the magnetisation for  a 
radial magnetised permanent magnet must be calculated for  each element 
separately (Fig. 5.46). 
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Field  computation and  numerical techniques 

(jts.M) 

ixi^yi) 
•• i^o. Vo) 

Fig. 5.46. Radial magnetisation of  magnet material within an element. 

(5.140) 

d(') _ yo Ĵ c D(») 
d  '  ' 

with 
^ _ + 

3 

y. 3 

(5.141) 

(5.142) 

(5.143) 

(5.144) 

5.7.4 Binary constraints 
Binary constraints enforce  a relation between values of  the magnetic 
vector potential at a first  boundary and values at a second boundary. 

\+kA,=m  . (5.145) 
Nodes belonging to the first  boundary are indicated as binary 

constrained (index 1), while nodes belonging to the second boundary are 
seen as free  nodes (index 2), yielding the system of  linear equations in 
matrix-vector notation: 

K , K,. K /I 0 
0 
0 

0 0 0 1 
Elimination of^]  using (5.145) gives: 

K„ Kj. 
Kj, Kj. 

" A, " t . - K ^ A ; 
A. 
A, 

A . A, . 

(5.146) 

0 -kK^, 0" T. -mKj., 

0 -AK,, 0 A, T, -mK„ 

Kv 0 -kK,, 0 A, T. 
0 0 0 I A. 

(5.147) 
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Symmetrising the matrix (3"̂  row = 3"* row - Ic • row) 
oTA^' K, 

0 
-h 
0 

0 
I A, 

A, 
A 

0 
T,  - K,,A^  - ffiK,,  - kX  + JtK.^A,  + kmK„ 

A. 
The values are calculated with eq.(5.145) after  solving the system 
of  equations. Fig. 5.47 shows the matrix assembling. 

(5.148) 

Fig. 5.47. Assembling of  the coefficient  matrix. 
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5.7.5Non-linear materials 
To implement the ferromagnetic  properties of  iron, the non-linear 
characteristics have to be considered. This results in a system of  non-
linear equations and this system can not be solved in a closed form.  A 
numerical iteration scheme has to be used to obtain a field  solution with 
the presence of  ferromagnetic  material. To obtain a solution of  such a 
non-linear system, the Newton iteration can be used. 

5.7.5.1 Newton iteration The Newton iteration is a fast  approach. 
Applying appropriate start solutions, its rate of  convergence is locally of 
quadratic order. The numerical solution of  a non-linear system is 
transferred  to a series of  linear solutions, i.e. in every iteration step a 
linear system of  equation is solved. Various modified  Newton methods 
are in common use. 

It is assumed to have the known system of  equations: 
K ( A ) A - R = 0 = F(A) (5.149) 

with K the coefficient  matrix, A the vector potential and R the right hand 
side; we call this the fundamental  system F(A) or residual. When 
compared to the set of  linear equations, in the non-linear case the 
coefïïcients  of  the system matrix are dependent on the solution vector A. 
The difference  between a solution in iteration step (k) and (k+l) is: 

= A'" + = A'" + SA''' (5.150) 
with d̂ *̂ "̂ as the defect  vector. The defect  is used as a stopping criterion 
for  the iterations. 

The fundamental  system is expressed by a Taylor series neglecting 
the second order and higher terms: 

0 = F(A'*^") = F(A'" + d'*"') = F(A'*') + • d'"" + • • - (5.151) 
OA. 

This yields: 
-F(A ' ' ' ) = P(A'")-d''^" (5.152) 

with P(A^') the Jacobian matrix from  iteration step (k). 

P(A) = F'(A) = . ^ . (5.153) 
OA 

The defect  vector can now be evaluated by using: 
d<""=_p-'(A'*')F(A<*') . (5.154) 

The iteration rule to compute A "̂̂ '̂  can be given by: 
A'*^"=A'"-P-'(A<*')F(A'*') . (5.155) 
For practical considerations the formulation  of  the iteration in this 

way is not very useful.  But solving the system 
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, (5.156) 
and afterwards  evaluating 

results in the overall solution of  the non-linear problem. If  the start 
solution is not chosen close to the exact solution of  the system, the 
iteration may oscillate, diverge and fail.  To avoid this, a modified 
damped Nevrton method can be implemented. 

5.7.5.1.1 Jacobian matrix and final  system of  equations The Jacobian 
can be assembled by applying: 

. (5.158) 
Q-ti Jii>i »•) 

The first  term corresponds to the linear equations, while the second 
term exists only in the presence of  a non-linear material. By using an 
arbitrary matrix K" corresponding with the element matrix 

K<"=v,K' , (5.159) 
an arbitrary vector E can be defined  with the elements: 

(5.160) 
»1 

to obtain a more convenient formulation  for  the Jacobian matrix. 

" '  ^ AB'  '  ' 
(5.161) 

The system of  equations to obtain the defect  can be written by: 
P/. P/. 0 ¿TA, 

p./ K P.. 0 

P . K 0 SX, 
0 0 0 I 

. . (5.162) 
Tj, -K^A^ -Kj^iA, -K^jA, -K^^A^ 
T, - K„ A, - K,J AJ -

T, -Kj^A^ - K „ A j -Kj^A^ 
0 

The source vector S for  the calculation of  the residual is introduced 
as: 

S = T - K A 
which yields: 

(5.163) 
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P. P/. o' 
p./ P. p. 0 s. 
Pv P. p„ 0 S, 
0 0 0 I 0 

(5.164) 

Elimination ofAi  using (5.125) gives 
"p^ 0 o' - ¿ A / 

0 p.: --tPn 0 áA, s, -/nP„ 
0 p . -kV, 0 ¿fA, S. 

0 0 0 I 0 

(5.165) 

and s ymmetrising the matrix by (3"* row = 3"* row - k ' 2"'' row) yields 
0 
I 

0 0 SA^ 
p. (5.166) 

0 

0 

5.7,5.1.2 Damped Newton iteration For the Newton method, an 
appropriate step length of  the algorithm has to be chosen to save the 
iteration from  divergence. The damped Newton iteration is a variant of 
the original method. The defect  vector, Newton correction, is damped by 
a factor  a , 

• (5.167) 
The idea is to accept the iterated A "̂̂ '̂  only if  the damping criterion 

||F(A'->)|L^||F(A'")|L (5.168) 
is satisfied  to ensure convergence. If  this condition is not satisfied, 
damping steps must be performed  until 

F(A'*' ^(1-<T«)||F(A<^')| (5.169) 
with the parameters a = P ' s for  the damping steps j=0(l)jniax is satisfied 
or a maximum number of  steps is performed  without success (Kosmol "). 
The parameters are chosen in the range of: 
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p - m 
cr = (0,>i) . (5.170) 
i > 0 
Typical values are jff  = 0.5, a = 0.5, s = l. The maximum number of 

steps is typically between 5 and 10. 
This scheme represents an adaptive damping factor  for  the Nevrton 

iteration. If  further  problems occur, and the solution alread^y diverges; 
special algorithms such as gradient steps (Hameyer can be 
implemented to try to recover convergence. 

5.8 Adaptive refinement  for  2D triangular meshes 

To obtain a high accuracy of  the approximated solution using the FEM, 
the number of  elements has to be high. Refining  uniformly  causes many 
finite  elements in regions where they are not recommended. The idea of 
an automated adaptive mesh refinement  is to refine  the discretisation 
locally in different  iteration steps, by starting with a minimum mesh and 
terminating this approach with a quality mesh. 

The problem m this approach is to know where more elements are 
recommended and where fewer  elements are sufficient  to obtain the 
desired global accuracy. Here, error estimation plays an important role. 

To enhance the quality of  a finite  element discretisation, different 
strategies can be followed.  Errors in the solution can be identified  at 
different  stages of  the field  analysis: 

• a priori, before  the field  is computed 
• a posteriori using the field  solution to estimate the error. 

Adaptive mesh refinement  is often  a combination of  a-priori, a-
posteriori error estimation and a refinement  algorithm. Error estimators 
indicate which elements to refine.  Due to a-priori mesh quality 
indicators, various steps such as node movements or edge swapping are 
performed.  Mesh refinement  based on an error estimator improves the 
convergence when compared to a uniform  refinement  of  all elements. The 
slope of  the global error \e\ in Fig. 5.48 is an indication for  the 
convergence rate. 

W-W 
e = (5.171) 

with W the energy stored in the model, Nfi  the number of  nodes, 
energy stored in a model (exact solution). In practice, is calculated 
with a sufficiently  high number of  nodes. 
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Global error |e| 

l.OE-04 = 

l.OE-OS 
100 1000 10000 100000 

Number of  nodes N„ 

Fig. 5.48. Global error versus the number of  nodes. 

The proper combination of  the various error estimators with the 
appropriate element refmement  algorithm ensures acceptable 
computational efforts  and efficient  use of  the available memory 
resources. In the following  sections, some notations are introduced to 
explain the described refinement  techniques. 

5.8.1 Type of  element refinement 
Two different  types of  isotropic refinements  are considered here. It is 
assumed that the problem solution is unknown and thus no field 
information  is available. Therefore,  an anisotropic mesh refinement  is not 
discussed here. 

Red I, the first  method of  refinement,  is element-based. Here, a new 
node is inserted in the centre of  an element (Fig. 5.49). 

'Red r 'Red' 'Green II' 'Green I' 

Fig. 5.49. Element and edge-based refinement. 

For an element-based refmement,  the number of  new elements per 
refined  element and the total number of  new elements per adaptation step 
is low because the refinement  has no influence  on the neighbouring 
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elements. The initial aspect ratio of  the new elements is worse than that 
of  the original element. 

The boundaries of  the studied domain must be treated in a special 
way using this strategy (Fig. 5.50). 

Fig. 5.50. Element-based refinement  at boundaries. 

The second type is an edge-based refinement,  i.e. a number of  new 
nodes are inserted along the edges of  an element. Using an edge-based 
refinement  approach, the number of  new elements per refined  element is 
high and neighbouring elements are influenced.  Adjacent elements must 
be refined  with Green I and II as well. Three different  types of  edge-
refinement  can be distinguished indicated by the number of  marked edges 
(Fig. 5.49). 

No special treatment of  boundaries is recommended here. The initial 
aspect ratio of  the new elements is equal to the aspect ratio of  the original 
element. 

5.8.2 A priori error estimation 
This type of  error estimation is performed  before  a numerical 
computation to enhance the quality of  the FEM mesh. Because no 
solution is known, geometrical properties, such as the shape or angles of 
a finite  element of  the mesh, are chosen to estimate the quality of  the 
discretisation. But such a priori error estimation does not permit a general 
statement about the accuracy of  the field  solution because the overall 
accuracy of  the field  approximation depends on the precise discretisation 
of  the geometry in regions with a large change of  the field  quantities as 
well. Therefore,  an a posteriori error estimator is necessary to estimate 
the relative error of  the field  solution. Following a particular meshing 
strategy, minimum or quality mesh, various actions can be taken to 
minimise the numerical approximation error of  the overall field  solution 
before  starting the field  computation itself 
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Fig, 5.51. Geometrical defmitions  for  a standard triangular finite  element. 

Some general rules to generate a uniformly  distributed discretisation 
with triangular elements can be given. Using standard triangular fmite 
elements, the quadratic deviation from  the angles of  the triangle a¡ from 
the standard angle ;r/3 should tend to a minimum: 

l ¿ ( a , - ; r / 3 y ^ m i n . (5.172) 
3 i-i 

The ratio of  largest and smallest angle in the mesh should tend to 
unity: 

^ - > • 1 . (5.173) 

The ratio of  maximum to minimum side length of  a triangle should 
tend to unity: 

^ - > • 1 . (5.174) 

Further details can be foimd  in (Babuska & Aziz 

5.8.2.1 Aspect ratio The aspect ratio y of  a triangular element is 
calculated as the ratio of  radius R of  the circumscribed circle to twice the 
radius r of  the inscribed circle (Fig. 5.52). An equilateral triangle has an 
aspect ratio of  one. Therefore,  within the discretisation, the ratio of  outer 
to twice the inner radius of  a triangle should tend to unity to generate a 
uniform  mesh: 

^ = , (5.175) 
2r 

with a, b and c the length of  the three edges and s the semi-perimeter of 
the triangle. 
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s = -
a + b + c (5.177) 

Fig. 5.52. Inscribed and circumscribed circle and edge definition  of  a triangle. 

5.8.2.2 Delaunay triangulation The quality of  a generated mesh is 
characterised by 

• the size of  the elements referred  to the outer dimensions of  the 
area of  interest 

• an average element aspect ratio close to one 
• a low worst element aspect ratio 
• the ability to restore the original geometry. 

A Delaunay triangulation is a first  step to a high quality mesh. 
Delaunay triangulation is defined  in the following  way: 

For each pair of  two adjacent triangles, the minimum of  the six 
angles in the two triangles is larger than it would have been if  the 
diagonal of  the quadrilateral had been swapped. 

This abstract definition  means avoiding small angles and thus long 
elements with a large aspect ratio. The shape of  two considered triangles 
must be unchanged. 

o 

Fig. 5.53. Swapping the diagonals of  a quadrilateral, formed  by two adjacent 
triangles. 

Each pair of  adjacent triangles holding the same region label is 
tested. The circumscribed circle of  one of  the triangles is calculated out of 
the co-ordinates of  the nodes. The diagonal is swapped if  the fourth  node 
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lies inside the circumscribed circle (Fig. 5.53). The circumscribed circle 
is in practice never calculated because this is too time consuming. 

Fig. 5.54. Test for  a Delaunay triangulation. 

5.8.2.3 Cline and Renka test If  node b lies in the circumscribed circle 
of  the triangle formed  by nodes a, c and d,  then this yields according to 
Fig. 5.55: 

lnR-lRa<lRp  , (5.178) 
, (5.179) 

or 
sin(a + ^ ) < 0 , (5.180) 
sin(a)cos(^)+cos{a)-sin{^)<0 . (5.181) 

Fig. 5.55. Cline and Renka test. 

Round-off  errors may cause problems if  sin(a + is close to zero. 
This happens when: 

• a + p IS  near n 
• a and p are both near 0 
• a and P are both near TI. 
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Node b lies almost on the circumscribed circle in the first  case and 
swapping the diagonal has no bad effects.  Swapping the diagonal may 
result in a wrong triangulation in the last two cases. Therefore,  additional 
tests are included in the algorithm. 

Table 5.6. Cline and Renka algorithm. 

Step 1: = 

Step 2: if(cos(a)^0  and cosC0)>O) 
then swap = FALSE 

exit 
Step 3: if(cos(a;)<0  and cos(^)<0) 

then swap = TRUE 
exit 

Step4: sin{a) = (x„ 
sin{fi)  = { x , - x ^ y i y , - x , ) 
sin{a + /3)  = sin(a)- cos(^)+ cos{o;) - sin(^) 

Step 5: if  (sin(£r + ^ ) < 0 ) 
then swap = TRUE 

exit 
else swap = FALSE 

exit 

5.8.2.4 Lawson's Delaunay algorithm This swapping algorithm can 
be used for  an element-based refinement  strategy. Fig. 5.56 shows the 
initial triangulation with 11 nodes and 12 elements. When a new node is 
inserted, the existing triangulation is updated to a new Delaunay 
triangulation. This means in practice that the new nodes are inserted on a 
node-per-node base and each time some tests are performed. 

In the Delaunay algorithm of  Lawson all the triangles adjacent to the 
edges opposite the new node are placed on a LIFO-stack (last-in, first-
out). A maximum of  three elements is placed on the stack in the first  step. 
All elements are taken one by one from  the stack and a test is made as to 
whether the new node lies inside the circumscribed circle. If  the new 
node lies in the circumscribed circle, the diagonal of  the quadrilateral is 
swapped to generate two better-shaped elements. The triangles that are 
now adjacent to the edges opposite the new node are added to the stack. 



www.manaraa.com

Fig. 5.56. Initial triangulation. 

Fig. 5.57 illustrates Lawson's algorithm for  the initial triangulation. 
According to an a posteriori error estimator, element number 6 is chosen 
to be refined.  The new node receives the number 11 and is inserted in the 
centre of  the element (Fig. 5.57a). Fig. 5.57b shows the three new 
elements. One of  the three new elements gets the original element 
number and the other two get the numbers 12 and 13. For each inserted 
node the number of  elements increases by two. The three elements 
adjacent to the edges opposite the new node are put on the stack (Fig. 
5.57c). 

The element that is put last on the stack is taken first  from  the stack 
and tested as to whether the new node lies inside the circumscribed circle 
of  the element (Fig. 5.57d), If  so, the diagonal of  the quadrilateral is 
swapped (Fig. 5.57e). Because there are no elements that are now 
adjacent to the edges opposite the new node, no elements are added to the 
stack. The next element is taken from  the stack and is tested for  whether 
the new node lies inside the circumscribed circle (Fig. 5.57f).  The 
diagonal of  the quadrilateral is swapped (Fig. 5.57g). Two elements are 
now adjacent to the edges opposite the new node and are added to the 
stack (Fig. 5.57h). Three elements are now on the stack. 

The next element is taken from  the stack and a test is performed 
(Fig. 5.57i). No swapping is necessary and the same applies for  the next 
element on the stack (Fig. 5.57j). The last element from  the stack is tested 
(Fig. 5.57k). The new node does not lie inside the circumscribed circle of 
the last element taken from  the stack. Fig. 5.57/ shows the resulting 
Delaunay triangulation. 
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Fig. 5.57. Lawson's Delaunay algorithm. 

5.8.3 Reconstruction of  the original geometry 
Another characteristic of  a refinement  algorithm to obtain high quality 
meshes is the ability to restore the original geometry when elements are 
refined.  Of  each edge of  an element on an outline, the primitive (arc, 
circle or line) to which it belongs, is stored. If  an edge of  an arc or circle 
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is refined,  the new node is not inserted in the middle of  the edge. The new 
node is inserted in the middle in terms of  polar co-ordinates (Fig. 5.58). 

P. 2 (5.182) 

Fig. 5.58. Restoring to the geometry during refinement. 

5.8.4 Moving nodes 
Moving the nodes results in a lower average aspect ratio. A node is 
moved to the centre of  the surrounding nodes (Fig. 5.59). A test is 
performed  so that no elements with a negative area are introduced. 

n in 
I B-l 

y.^-Eyi 
n 1-0 

(5.183) 

(5.184) 

Fig. 5.59. Moving the nodes. 

An edge-based refinement  is easily extended with the moving node 
approach. A node is moved to the centre of  the surrounding nodes and all 
pairs of  two adjacent surrounding elements are tested. If  swapping of  a 
diagonal was necessary, the node is moved again to the new centre of  the 
surrounding nodes. The loop is repeated until the number of  swaps is 
sufficiently  low. Fig. 5.61 a shows the triangulation before  moving the 
nodes, after  one loop (Fig. 5.61b) and after  two loops (Fig. 5.61c) of 
moving and swapping. No diagonals were swapped after  the two loops. 
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for  {i=0;i<nuiiinode;i-H-) 
inovenode(i); 
swapedge(i,swapped); 
if  (swapped = TRUE) 

mQvenode(i); 

Fig. 5.60. Extended test algorithm. 

Fig. 5,61. Triangulation after  moving the nodes. 

5.8.5 Starting solution for  the next adaptation step 
An iterative solver to solve the system of  linear equations needs a starting 
solution. The first  start solution is often  the zero-solution. The starting 
solution of  the next adaptation step is determined by the interpolated 
solution of  the previous step before  movement of  the nodes. When an 
edge is refined,  the average of  the solution of  the two nodes forming  the 
edge is taken as the solution for  the new node. A starting solution 
obtained in this way can reduce the number of  iterative steps by 25 %. A 
reduction of  one or more Newton steps is possible for  strongly saturated 
problems, 

5.8.6 Additional refinement  rules 
Marking the edges to be refined  is performed  in four  steps to improve the 
quality of  the generated mesh, even in regions where no elements have to 
be refined, 

• To improve the initial average aspect ratio of  the new 
elements, the edges of  elements with an aspect ratio >5.0 are 
marked in a special way (Fig. 5.62). 

• All edges of  an element to be refmed  are marked. 
• All non-outline edges that touch two outlines are marked for 

refmement  during the first  adaptation step (Fig. 5.63). 
• All edges that touch an outline edge to be refmed  are marked 

(Fig. 5.64). 
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Fig, 5.63. Refinement  of  non-outline edges touching two outlines. 

Fig. 5.64. Refinement  of  edges touching an outline edge i. 

5.8.7 A posteriori error estimation 
An a posteriori error estimator evaluates the local error per element, 
based on a previously computed solution. This error estimation can be 
performed  in two different  ways: 

• model based and 
• region, label based. 

To obtain a local error between 0 and 1 for  the model based strategy, 
it is normalised, i.e. divided by the maximum error over all elements in 
the model. 

^ . (5.185) 

This type of  estimation is called model error estimation. A 
maximum accepted local error s ^ (e.g. 10 %) can be specified  and all 
elements with a larger error bound are considered for  refinement. 
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(5.186) 
The elements are arranged according to their local error and the 

elements with the highest error are refmed  first.  The number of  refined 
elements is determined by the maximum percentage of  new elements p 
specified  (e.g. 100 %). The maximum number of  elements Nj. marked 
for  refinement  is given by: 

N^=p-c-N,  . ' (5.187) 
with 7/, the number of  elements, c a constant depending on the 
refinement  method. The constant c indicates the ratio of  the number of 
refined  elements to the number of  new elements: c = X for  an edge-based 
refinement  and c = X for  an element-based refmement. 

ek 
1.0 

Slocal 

0.0 K 

Fig. 5.65. Determining the elements to be refmed. 

A label-based error estimator calculates the local error within each 
region label separately and the error is normalised by division with the 
maximum error within the label. The maximum number of  elements N^j 
to be refmed  is determined by the number of  elements N^j inside the 
label. 

. (5.188) 
Elements are refined  all over the model, but also in regions (labels) 

where it is probably not necessary. This, if  not desired explicitly, 
represents a disadvantage of  a label-based refmement. 

The local error can be evaluated in various ways. The error indicator 
has influence  on the generated mesh and its proper choice is dependent 
on the problem definition  as such, time-harmonic or static magnet field 
solution and on the strategy of  refinement,  minimum or quality meshing. 
Therefore,  no indication regarding use of  a particular estimator or 
estimation scheme will be given. 
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5.8.7.1 Energy in an element The energy Wĵ  in an element is an 
indication for  the local error e]̂ . 

(5.189) 

5.8.7.2 Flux density at a node The magnetic flux  density , at a node 
i is the weighted average of  the values of  the magnetic flux  density , 
of  the surroundmg elements k  belonging to the same label (Fig. 5.66). 
The weighting factor  is the area Â , of  the elements. 

(5.190) 
Z A , 

The local error of  an element is calculated as the difference 
between the magnetic flux  density of  the element and the average of  the 
nodal values. 

^ (5.191) 

Fig. 5.66. Calculation of  the magnetic flux  density at a node. 

5.8.7.3 Magnetic flux  density in a node weighted with the energy 
The local error eĵ  based on die magnetic flux  density in a node is 
weighted with the energy W]̂  in an element. 

(5.192) 

- 3 

5.8.8 Numerical implementation 
Error estimation and mesh enhancements require computation time. 
Searching in very large data structures absorbs most of  this time. To 
optimise such efforts  with respect to the computational costs towards a 
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better approximation of  a field  solution, 'intelligent' data structures are 
recommended to accelerate the search routines. 

Starting from  the element matrix 'eleni  indicating how the elements 
are built out of  the nodes, the node-to-element matrix 'nodeeleni  is built 
in a straightforward  way (Fig. 5.67). This matrix gives for  each node the 
surrounding elements. The number of  surrounding elements is stored in 
the vector 'surrelem'.  Fig. 5.68 gives the element matrix for  the initial 
triangulation of  Fig. 5.56 and Fig. 5.69 the node-to-element matrix and 
the number-of-surrounding-elements  vector. 

0 
J 
2 
3 
4 
5 
6 
7 
8 
9 
10 

for  (k=0;k<numeIem;k-H-) 
for  (i=0;i<3;i-H-) 

nodeelem[elem [k, i],surrelem[elem[k, i]] ]=k; 
surrelem[elem [k,i] ]++; 

Fig. 5.67. Building the node-to-element matrix. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0 1 9 
0 9 7 
1 2 10 
1 10 9 
2 3 10 
3 4 5 
3 5 8 
3 8 10 
5 6 7 
5 7 8 
7 9 8 
8 9 10 

Fig. 5.68. Element matrix. 

0 1 
0 2 3 
2 4 
4 5 6 7 
5 
5 6 8 
8 
1 8 9 10 
6 7 9 10 11 
0 1 3 10 11 
0 3 4 7 11 

Fig. 5.69. Node-to-element matrix and number-of-surrounding-elements  vector. 
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The neighbouring-element matrix is now built. For each edge of  an 
element the neighbouring element is determined. The two rows of  the 
node-to-element matrix are searched for  the common element numbers. 
The element itself  is found  and if  another element number is found,  it is 
that of  the neighbourmg element. As shown in Fig. 5.69, the rows of  the 
node-to-element matrix are sorted and the number of  surrounding 
elements is almost a constant. This means that very effective  and fast 
search algorithms can be used. Fig. 5.70 shows the neighbouring-element 
matrix for  the initial triangulation. Binary constraints are dealt with 
during the building of  the neighbouring-element matrix. Elements 
connected through binary constraints are neighbouring elements. 

0 3 1 
I 0 10 
2 4 3 
3 2 11 0 
4 7 2 
5 6 
6 5 9 7 
7 6 11 4 
8 9 
9 8 10 6 
10 1 n 9 
11 10 3 7 

Fig. 5.70. Neighbouring-element matrix. 

5.8.8.1 Edge-based refinement  An edge-based refinement  is 
implemented using a neighbouring-element matrix. The refinement  of  an 
element influences  the neighbouring elements. An error estimator marks 
the elements to be refmed.  All the edges of  the marked elements are 
marked for  refinement.  Putting the number of  the new node according to 
the edge to be refined  m the to-be-refined-edges  matrix 're/edge'  does 
this. At the same time, the appropriate edge of  the neighbouring element 
is marked with the same node number. When two elements are connected 
through binary constraints, the next node number is used. Fig. 5.71 shows 
the to-be-refined-edges  matrix according to the refinement  of  Fig. 5.56. 
Again only element 6 is to be refined  ('Red' element). Elements 5, 7 and 9 
are 'Green I' elements. 



www.manaraa.com

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
JO 
11 

11 
11 12 • 13 
13 

12 

Fig. 5.71. To-be-refined-edges  matrix. 

Fig. 5.72. Edge-based refinement. 

After  all edges are marked for  refmement,  each element is refined 
according Fig. 5.72. Testing as to whether the intermediate triangulation 
is a Delaunay triangulation is not done. A Delaunay triangulation is 
unique and therefore  it is sufficient  to use a global Delaunay algorithm to 
obtain a Delaunay triangulation with the new nodes. A possible algorithm 
is a loop over all nodes and testing all pairs of  two adjacent surrounding 
elements, The number of  swapped diagonals is counted and the loop is 
repeated until there are no swaps performed.  The resulting triangulation is 
a Delaunay triangulation (Fig. 5.72c). In practice, the loop is repeated 
until the number of  swaps is less than 10 % of  the number of  swaps in the 
first  loop. Because the number of  swaps is rather low for  an edge-based 
refinement,  the quality of  the generated mesh is high, but the mesh is 
strictly speaking not a Delaunay triangulation. 

5.9 Coupling of  field  and circuit equations 

In the FEM models considered up to now it was assumed that current 
densities, permanent magnets and/or given potential distributions were 
imposed as field  exciting sources. Many models of  technical relevance 



www.manaraa.com

can be modelled using the mentioned sources. But electromechanical 
devices are operated by currents and/or voltages generated by a power 
supply. Thus, such real devices are fed  from  electrical circuits. Such 
external circuits consist of  inductances, capacitances, resistances, current 
and/or voltage sources. 

The two-dimensional model of  an induction motor does not consider 
the resistor of  the cage end-windings. The connection of  the rotor bars is 
not modelled in a simple two-dimensional cross-sectional model. 
Therefore,  additional external circuits with resistive elements have to be 
defined  to model the short-cut rings of  the rotor cage. 

In the following  sections such external circuit equations will be 
defined  and coupled to the two-dimensional finite  element equations. The 
types of  stranded and solid conductor will be introduced and 
implemented in the FEM model. Both types can be handled 
simultaneously in one model using a mixed formulation. 

The same notation as used in the previous sections is assumed and 
used. 

5.9.1 Time harmonic problem 
Regions with eddy currents and applied voltage gradient are called solid 
conductors. 

The partial differential  equation for  a two-dimensional time-
harmonic magnetic problem in solid conductors is: 

v{vyA) -} iooA = - J , . (5.193) 
To stay in the same notation as in section 5.7 using the relative 

reluctivity v, and the permeability of  the free  space , we can write: 
= . (5.194) 

Regions without eddy currents but with applied current density J^ 
represent stranded conductors. They are described by Poisson's equation: 

V-(vyA} = -M,J„ . (5.195) 
For non-conducting regions Laplace's equation is valid: 

= 0 . (5.196) 
Different  materials with respect to their conductivity cr and 

permeability /i can be considered element by element. 
The corresponding energy-minimum functionals  are 
• for  solid conductors: 

F(^) = i ; (5.197) 
2 OKIU 
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• for  stranded conductors: 

FU) = i \[V\VA\-IFIJ.^AN  ; (5.198) 
ĤbubIBI 

CWDICKII, 
• and for  non-conducting regions: 
F ( 4 = - Ji '^IV^dQ (5.199) 

5.9.1.1 Functional within an element For non-conducting regions 
and regions without eddy currents (stranded conductors) the 3x3 element 
matrix K'"' remains the same as in the magneto static case (5.123). 

(5 200) 
4A, 

For regions with eddy currents (solid conductors) the functional 
within an element is: 

{A)  = - + j TO/I^A'-'A'  - 2 / / . n . (5.201) 

The second term is: 

i = J i V A . d a ^ , . (5.202) 
2 a, 2 1.1 y=i 

The terms of  the 3x3 eddy current matrix V"  are given by: 

, (5.203) 
o 

. (5.204) 

The matrix L'*' is symmetric. In matrix-vector notation, the 
functional  within an element becomes: 

+ . (5.205) 

5.9.1.2 Source vector For regions without eddy current but with an 
applied current density J^ (stranded conductors) the source vector T'" 
remains the same as in the static case (5.130). 

• (5.206) 
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Windings of  electrical machines can consist of  a number of 
conductors connected ui parallel with geometrical dimensions such that at 
the considered frequency  eddy currents can be neglected. For this case, 
and stranded conductor p , the source vector is written in terms of  the 
current per strand ^. 

A N r(') = » I 
Br.p 

(5.207) 

JV,̂  is the number of  turns of  the winding or the strands of  conductor p 
and is the area of  the stranded conductor in the FEM mesh. 

In the case of  a solid conductor q , the source vector can be written 
in terms of  its voltage drop V^ ̂ : 

A. cr'" 
3 £ 

with i the length of  the conductor. 

(5.208) 

5.9.1.3 System of  equations The system of  linear equations is 
assembled in the same way as for  the magneto static problem. 

[K^ 0 T A , 
0 A. A (5.209) 

Dirichlet boundary conditions are considered in eq.(5.209) and 
binary conditions are omitted. 

If  the currents in the stranded conductors and the voltage drops over 
the solid conductors are unknown, extra circuit equations have to be 
added to the system. These equations can be seen as boundary conditions. 
The circuit conditions act as a lumped parameters model that is applied to 
the boundary of  the differential  problem. 

If  /„^ and V^ ̂  are unknowns, the system in (5.209) becomes: 
"A, 

K , 0 
0 0 

J 

(5.210) 

5.9.1.4 Stranded conductors in eddy current problems The skin 
depth of  the current into a conducting material is given by; 

\(Op<J 
(5.211) 
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with (B the angular frequency  of  the current, jx the permeability and a 
the conductivity of  the conductor. In general, it is assumed that the 
current density is uniformly  distributed across the skin depth. However, 
when a number of  conductors are connected in parallel, the induced 
voltage depends on both the current density and the magnetic vector 
potential (5.212). 

The entire voltage drop over the stranded conductors is calculated 
by using the average voltage over the conducting area: 

V  =N 
^ ar.f  '^t.f 

N. 
'jP 

I FJI. 
+ ]Q}A 

Ir.P 

d n 

with 

(5.212) 

(5.213) 

When a stranded conductor is considered as a region of  filamentaiy 
conducting wires, the fill  factor  f^^  for  the conducting material is 
defined  as the ratio of  the surface  of  the conducting material to the entire 
surface  of  the conductor. In this way, insulating material can be 
considered. 

N 

C.1 J'l i 

N: (5.214) 

of 
From eq.(5.214) it can be taken that the total voltage drop consists 
a resistive component V '̂̂  = R^^I^, ̂  and an inductive 

component FJ^ .̂ Therefore,  in an electric network model, a stranded 
conductor can be represented by a series connection of  an ohmic resistor 
and a controlled voltage source (Fig. 5.73). 

R.. ur,p 

Fig. 5.73. Network elements representing a stranded conductor. 
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5.9.1.5 Solid conductors in eddy current problems In the case of 
solid conductors, the gradient of  the vohage is assumed to be constant 
over the surface  of  the conductor. The eddy currents are a function  of 
both the voltage gradient and the magnetic vector potential: 

A. 
t 

at. 
»I >1 

(5.215) 

From eq.(5.215) it can be taken that the current consists of  an 
admittance current = and an eddy current component. 
In the circuit analysis, a solid conductor can be modelled by admittance 
and a controlled current source connected in parallel (Fig. 5.74). 

Fig. 5.74. Network elements representing a solid conductor. 

5,9.2 Coupled field-circuit  equations 
To solve the time-harmonic magnetic field,  the unknown magnetic vector 
potentials can be calculated by evaluating the: 

• known potentials at the boundary (Dirichlet) 
• known current densities in stranded conductors 
• known voltage gradients in solid conductors. 

In reality, it is not possible to know these quantities from  the system 
before  solving the magnetic field  because they are dependent on each 
other. The electric and magnetic parameters, and thus the fields  of  the 
system interact very strongly. 
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It is recommended, therefore,  that the currents of  stranded 
conductors and the voltage drops in solid conductors are considered as 
unknowns of  the system. The equations (5.215) and (5.214), describing 
an external electric circuit (Fig. 5.73 and Fig. 5.74), have to be added to 
the set of  field  equations to obtain a coupled system. 

The coupling of  the magnetic field  with the-electric circuit equations 
can be obtained numerically strong or by a weak coupling. 

Using some initial values, a first  computation of  the magnetic field 
is performed.  Out of  this field  solution, the induced voltage drops over 
the stranded conductors and the eddy currents in solid conductors are 
evaluated. By using these results, the electrical quantities of  the electric 
circuit network are calculated, supplying new values for  the currents in 
the stranded conductors and the voltage drops over the solid conductors, 
to be used for  a new calculation of  the magnetic field. 

To solve the entire coupled field-circuit  problem, an iterative 
procedure can be applied. Both partial problems are solved in successive 
steps. This approach is a numerically weak coupling of  the two systems. 

To obtain a numerically strong coupling, it is possible to assemble 
all unknowns in one vector and to combine all equations describing the 
system in one matrix. All equations describing the system are solved 
simultaneously. This approach is called a numerically strong coupling of 
the systems. If  all stranded conductors are voltage driven and if  all solid 
conductors are current driven, the coupled matrix is given by: 

(5.216) 

0 1 
1 

-MOQ.,' " A / 
0 1 0 0 A, A, 

0 1 1 0 v . . 

0 i • 0 .v. . . . 

Multiplying (5.215) with a factor  X = and (5.214) with ~ x 

results in a symmetrical matrix. 

5.9.2.1 Mixed stranded and solid conductors Mixed stranded and 
solid conductors in a connected network cause problems describing the 
circuit. The matrices obtained by a separate analysis of  stranded and solid 
conductors can not be arranged together. 

The circuit theory indicates a problem while enumerating tree and 
co-tree branches. In Fig. 5.75a one of  the three solid conductors has to be 
considered as a link. In Fig. 5.75b only one of  the stranded conductors 
can be considered as a tree branch. 

Replacing the magnetic branches, as indicated in Fig. 5.73 and Fig. 
5.74, fails.  In this case cut-sets containing a stranded conductor branch 



www.manaraa.com

include solid conductor branches. Loops holding a solid conductor branch 
include stranded conductor branches. 

To solve this problem, the connected network has to be represented 
in another form. 

link 

iree branch 

Fig. 5.75. a) Star-connected stranded conductors and b) solid conductors 
connected in parallel. 

5.9.3 Network topology 
With a network topology, lumped parameter networks obeying three 
basic laws: 

• Kirchhoff  voltage law (KVL), 
• Kirchhoff  current law (KCL) and 
• Branch current-voltage relations (BCVR) 

can be studied. A complete description of  the network delivers 
information  on: 

• the connection of  branches, 
• the reference  directions for  branch currents and voltages and 
• the branch characteristics. 

Items 1 and 2 can be represented by a directed graph (Fig. 5.76). 
By defining  loops, cut-sets and a tree, the network description can 

be performed  systematically. Loops are the sub-graphs to which KVL is 
applied. Cut-sets are the sub-graphs to which a generalised KCL is 
applied. The concept of  a tree is a tool for  a systematic formulation  of 
independent KCL and KVL equations. 

d 

/ 
Fig. 5.76. Directed graph. 
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5.9.3.1 Definitions 

Path 
A set of  branches is called a path between two nodes p and q, if  the 

branches can be labelled in such a way that: 
• consecutive branches always have a common endpoint, 
• no node is the endpoint of  more than two branches in the set, and 
• p is the endpoint of  exactly one branch in the set, and so is q. 

Thus, A path is just a route between two nodes. In Fig. 5.76 
branches {dhib)  form  a path between nodes I and 2. 

Connected graph 

An undirected graph is a connected graph if  there exists a path 
between any two nodes of  the graph. A network is connected if  the 
associated graph is connected. The graph in Fig. 5.76 is connected. 

Loop 

A sub-graph of  a graph is called a loop if 
• the sub-graph is connected, and 
• eveiy node of  the sub-graph has exactly two branches incident at 

it. 

For example, in Fig. 5.76 the branches {abed)  form  a loop. 

Tree, co-tree, branches and links 

A sub-graph of  a connected graph is called a tree if 
• the sub-graph is connected, 
• the sub-graph contains all nodes of  the graph, and 
• the sub-graph contains no loops. 

For example, in Fig. 5.76, the branches {aedgt)  form  a tree. The 
branches belonging to a tree are called tree branches, and those that do 
not belong to a tree are called links. All the links of  a given tree T  form 
what is called a co-tree with respect to the tree T.  It can be shown that for 
a connected graph with n nodes, any tree Thas exactly n-1 tree branches. 
Furthermore, each set of  n-1 branches without loops constitutes a tree. 

Cut-set 

A set of  branches of  a connected graph is said to be a cut-set if 
• the removal of  the set of  branches (but not their endpoints) 

results in a graph that is not connected and 
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• after  the removal of  the set of  branches, the restoration of  any 
branch from  the set will result in a connected graph again. 

For example in Fig, 5.76, the branches {aed)  or (dg/b)  form  a cut-set. 

Incidence matrix 

An incidence matrix of  a directed graph with n nodes and b branches 
is a 7T ;c i» matrix A, = J where: 

• a,; = 1 if  branch j is incident to node /, and the arrow is pointing 
away from  node i, 

• = - l if  branch j is incident to node i, and the arrow is 
pointing towards node i, and 

• iij = 0 if  branch j is not incident to node i. 
1 

Fig. 5.77. Directed graph. 

For example, for  the directed graph from  Fig. 5.77: 

node  J 

2 
1 

- 1 

0 
0 

b 
0 
1 
0 

- 1 

I 
0 

- 1 
0 

d 
0 
0 
1 

- 1 

0 
I 

- 1 
0 

f 
- r 
0 
0 
1 

incident  branches 

(5.217) 
One of  the rows of  A. is linearly dependent on the other rows. The 

matrix A obtained from  A, by omitting a row is called a reduced 
incidence matrix. A, is called the complete incidence matrix. 

The KCL for  the network can be written in matrix-vector notation as 
A.i = 0 . (5.218) 
The maximum set of  mdependent KCL equations, obtained from  the 

nodes of  a connected network, can be expressed as 
Ai = 0 . (5.219) 
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A can be partitioned as [a^. i A^] where the columns of  A,, 
correspond to the tree branches of  a chosen tree T,  and the columns of 
A^ correspond to the links. 

Loop matrix 

For a directed graph with b branches and «/ oriented loops, the loop 
matrix isa n,xb matrix B, = where: 

• if  branch j is in loop i, and their directions agree, 
• J = -1 if  branch j is in loop i, and their directions oppose, and 
• fij,  = 0 if  branch j is not in loop i. 

For example in Fig. 5.77 there are seven loops. The loop matrix is: 

a b c d e f branches in the loop 
loop J "1 0 - 1 0 1 0" aec 

2 0 1 0 - 1 - 1 0 bde 
3 1 1 0 0 0 I abf 

1 1 - 1 - 1 0 0 abdc 
5 0 0 1 1 0 1 cdf 
6 1 0 0 1 1 I aedf 
7 0 1 I 0 - 1 1 bfce 

(5.220) 
The KVL for  all loops can be expressed in matrix-vector notation as 
B.v = 0 (5.221) 
Any sub-matrix B^ consisting of  the maximum number of 

independent rows of  B. is called a basic loop matrix. Thus, the b-n + \ 
independent KVL equations may be expressed as 

B,v = 0 (5.222) 
A systematic method of  constructing a basic loop matrix is through 

the aid of  a tree T.  Each link of  the associated co-tree, together with the 
unique path through T, forms  a loop, called the fundamental  loop for  that 
link. A sub-matrbt of  B, constructed by the use of  b-n + \ links is 
called a fundamental  loop matrix B,. 

For example, in Fig. 5.77 a tree Tconsists of  the branches {abc).  The 
corresponding fundamental  loop matrix is 
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b c\d 

Field  computation and  numerical techniques 

f 
d - 1 - 1 I I I 0 0 dbac 

Bf  = e 1 0 - 1 1 0 1 0 eca 
f _ 1 1 0 jo 0 1 fab 

(5.223) 
It is obvious that any fundamental  loop matrix can be partitioned as: 

I l] . (5.224) 

Cut-set matrix 

For a directed graph with b branches and n̂ , oriented cut-sets, the 
cut-set matrix is a x i matrix D, = [¡/̂ J where: 

• i/j, = 1 if  branch j is in cut-set i, and their directions agree, 
• if  branch j is in cut-set i, and their directions oppose, and 
• = 0 if  branch j is not in cut-set i. 

For example, there are seven cut-sets in the graph of  Fig. 5.77. The 
cut-set matrix is 

a b c d e / branches in the cutset 
cutset 

1 ' 1 0 1 0 0 -1" acf 
2 - 1 1 0 0 1 0 ahe 
3 0 0 - 1 1 - 1 0 cde 

0 - 1 0 - 1 0 1 bdf 
5 0 1 1 0 1 - 1 beef 
6 1 0 0 1 - 1 - 1 adrf 
7 - 1 1 - 1 1 0 0 abed 

The general form  of  the KCL in matrix-vector notation is: 
D i = 0 

(5.225) 

(5.226) 
Any sub-matrix D^ of  D, consisting of  the maximum number of 

independent rows of  D, is called a basic cut-set matrix. A systematic 
method for  constructing a basic cut-set matrix is through the aid of  a tree 
T.  Each tree branch of  T,  together with some (possibly no) links in the 
associated co-tree forms  a cut-set, called a fundamental  cut-set for  that 
tree branch. A sub-matrix D, constructed with the n-1 fundamental  cut-
sets is called a fundamental  cut-set matrix. 
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For example, for  the graph of  Fig. 5.77 with tree branches {abc),  the 
fundamental  cut-set matrix is 

a b c d  e f 

1 "l 0 0 [ 1 - 1 -I adef 
Df=2 0 I o | 1 0 - 1 

3 0 0 l i - I 1 0 cde 
(5.227) 

It is obvious that any fundamental  cut-set matrix can be partitioned 
as: 

D , = [ l l D j . 
Relationship between branch variables 

(5.228) 

When the reduced incidence matrix A, the fundamental  loop matrix 
B and the fundamental  cut-set matrix D are built corresponding to the 
same tree T,  the matrices can be partitioned by: 

A = [A, I A, 
B = [B, I 1 
D = ri !D. 

v = 

i = 

and the following  relationships can be given: 
v^ = (loop transformation), 
¡T = (cut-set transformation), 

~ A'^v^ (node transformation), 

(5.229) 
(5.230) 
(5.231) 

(5.232) 

(5.233) 

(5.234) 
(5.235) 
(5.236) 
(5.237) 

5.9.4 Circuit analysis 
Linear and time invariant networks with lumped parameters can be 
described by various techniques. The equations are the K.VL, the KCL 
and the branch current-voltage relationships (BCVR). The known 
quantities are the currents of  independent current sources, the voltages of 
independent voltage sources and the impedances of  the branches. 

5.9.4.1 Tableau analysis The unknowns in a tableau analysis are the 
branch currents and the branch voltages. The system of  equations consists 
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of  the KCL for  each node of  the circuit, the KVL for  each loop of  the 
circuit and the BCVR for  each branch of  the circuit. 

r 

"3 

Fig. 5.78. Example circuit. 

For example, consider the circuit of  Fig. 5.78. The system of  equations is 
given by: 

KCL(ni) '1 + «2 +¡3 = 0 
KCL(n2) -12 +/4 = 0 
KClirtj) -'1 - '3 - '1 = 0 
KV4/i] -V3 = 0 
KVL(/2) ^ -Vi + V2 + V4 = 0 
KVL(/3) V2 - V3 + V4 = 0 
BCVR(l) -Z,. / , + V1 = 0 
BCVR(2) -Z2./2 + V2 = 0 
BCVR(3) '•3 = / 

BCVR{4) V4 = v 
(5.238) 

It is obvious that the number of  equations is larger than the number 
of  unknowns. There are linear dependent equations in the system. The 
matrix is sparse, smgular and not symmetric. 

5.9.4.2 Modified  nodal analysis The unknowns in a modified  nodal 
analysis (MNA) are the nodal voltages and the currents through the 
independent voltage sources. For each node per connected circuit 
component, except the chosen reference  node, the KCL is written. 

Applying the BCVR to each branch immediately eliminates the 
currents. The branch vohages are expressed with respect to the nodal 
voltages. For each independent voltage source, an extra unknown current 
is added to the set of  unknowns. An extra equation, representing the 
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difference  between the two nodal voltages of  the voltage source to the 
known voltage drop, is added. 

For the circuit of  Fig. 5.78, this approach results in: 
'n+Y2  Ol 

-Y2 Y2 1 
0 1 0 

s ' 
= 0 

'4 V (5.239) 
The system of  equations is sparse and smaller when compared to the 

tableau analysis. There are no superfluous  equations. The unknowns are 
the nodal voltages and branch currents. 

5.9.4.3 Compacted modified  nodal analysis In the compacted form 
of  the MNA, the unknown currents through the independent voltage 
sources are eliminated by substitution of  the extra equations concerning 
the independent voltage sources. 

+ + . (5.240) 
The system of  equations is again reduced, moreover, there are no 

zero diagonal elements left  in the matrix. The matrix is symmetric. 

5.9.5 Topological methods 
A topological method for  circuit analysis is a technique deriving 
parameters describing the circuit behaviour from  the structure of  a graph, 
associated with the network. Some topological methods are the Signal 
Flow Graph method and the tree-enumeration method. 

5.9.5.1 Signal flow  graph A signal flow  graph (SFG) is a weighted 
directed graph representing a system of  linear equations. The nodes 
represent the variables; the branch weights represent the coefficients  in 
the relations between the variables. A node variable and the sum of  the 
incoming branch weights, multiplied by the node variable from  which the 
incoming branch originates, represent an equation. Consider for  example 
the SFG of  Fig. 5.79 and the corresponding system of  equations: 

= bx, + cx̂  + ex̂  , (5.241) 

= A + g^i • 
In a SFG, a node with outgoing branches only is called a source 

node. A node with some incoming branches is called a dependent node. A 
dependent node with incoming branches only is called a sink node. 
In Fig. 5.79, Xg is a source node, x,, x^  and Xj are dependent nodes 
and x, is a sink node. 
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Fig. 5.79. Signal flow  graph. 

5.9.5.2 Formulation of  the signal flow  graph It is assumed that the 
voltage sources do not contain loops, and that the current sources do not 
contain cut-sets. It is possible to select a tree T  such that all voltage 
sources v^ are tree branches, and all current sources ij are links. The 
impedance tree branches are characterised by the impedance matrix 
and the immittance co-tree branches are characterised by the admittance 
matrix Yĵ , The following  steps can construct a SFG: 

1. Apply KVL to express each element of  Vĵ  in terms of  elements 
of  V, and v j . 

2. Apply KCL to express each element of  i.̂  in terms of  elements of 
ij and i^. 

3. For impedance tree branches, each voltage is expressed in terms 
of  the current through the branch: v^ = Z î.̂  • 

4. For immittance co-tree branches, each current is expressed in 
terms of  the voltage across the branch: î  = Y^v^. 

A SFG formed  in this way displays the KCL, KVL and BCRV 
relations in their most primitive way. As a consequence, it is called a 
primitive signal-flow  graph. The primitive SFG of  the circuit from  Fig. 
5.79 is represented in Fig. 5.80. 

The number of  nodes in the SFG can very easily be largely reduced 
by the use of  a compacted signal flow  graph, which is obtained from  the 
primitive signal flow  graph by eliminating all sink nodes and the 
variables and v^. The compacted SFG of  the circuit of  Fig. 5.78 is 
represented in Fig. 5.81, 
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Fig. 5.80. Primitive signal flow  graph. 

< 

Fig. 5.81. Compacted signal flow  graph. 

5.9.6 Circuit analysis for  the coupled field-external  circuit system 
The solid conductors are considered as an admittance branch and a 
controlled current source connected in parallel: 

(5.242) 

A is the vector of  the magnetic vector potentials and jiW^Q^ is the 
matrix with the coupling terms of  (5.215). The stranded conductors are 
considered an impedance branch and a dependent vohage source 
connected in series: 

(5.243) 

where jflJiP^  is the matrix with the coupling terms obtained by the 
discrete integration of  (5.214). 
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S.9.6.1 Modified  and compacted modified  nodal analysis The tableau 
analysis is not suited for  numerical calculation because the dependent 
equations result in a singular system matrix. 

In an MNA, for  each connected sub-circuit a reference  node is 
chosen. On all other nodes an unknown voltage is defined.  For each 
independent voltage source and for  each stranded conductor, an unknown 
current is defined.  For each node, the KCL is written. The currents are 
immediately written in terms of  the nodal voltages by means of  the 
BCVR. In the case of  a stranded conductor branch or an independent 
voltage source branch, the current is unknown. For each of  these 
branches, an extra KVL equation describes the nodal voltages of  the 
endpoints in terms of  the unknown currents and the magnetic vector 
potentials. 

" i 

"1 

str* 

"4 

«3 

str sol 
0 R 

Stranded conductor 
— { M K 
Solid conductor 

«0 = refx "5 = «/2 

Fig. 5.82. Electric circuit with stranded and solid conductors. 

This method has been applied to the circuit in Fig. 5.82. 
KCL(ny) 
KCL(ni) 
KCL(n3) 
KCL(M4) 

1, +,2 
-'2 + '3 

= 0 
= 0 
= 0 

kVLfj"'*)" 
KVLC/) 
KWLisIr) 

v„, 

"«2 
= v 

-je)iPjrA = <i 
(5.244) 

The factor  x can synmietrise the coupled magnetic-electric system 
of  equations for  a 2D time-harmonic problem. 

The presents of  zero elements in the diagonal of  the matrix makes 
the choice of  an appropriate method for  solving the system of  equations 
more difficult. 

As with the CMNA, the extra KVL equations can be substituted in 
both the KCL equations and the field  equations, tending to a smaller and 
symmetric matrix widi a fully  occupied diagonal. However, the 
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implementation of  the dense circuit equations into the sparse system of 
field  equations makes the solution procedure difficult. 

The major problem of  the nodal approach in the circuit analysis is 
that the description of  the circuit is based on the voltage only. A more 
suitable description would be based on a hybrid use of  both unknown 
voltages and currents. Here, the difficulty  is the systematic determination 
of  the circuit components described by currents, voltages and the 
interface  parts in the circuit. 

5.9.6.2 Signal flow  graph for  coupled magnetic-electric problems 
The circuit in Fig. 5.83 is considered. Branches are assembled in the tree 
with preference: 

• voltage sources, solid conductors, impedances and stranded 
conductors. 

The preferred  order for  links is: 
• current sources, stranded conductors, admittances and solid 

conductors (Fig. 5.83). 

The fundamental  cut-set matrix and the fundamental  loop matrix are 
partitioned in components. They are associated with the stranded 
conductors being links (str),  tree branches (Jir*), solid conductors being 
tree branches (sol),  links (sol*),  independent sources (/ and v) and the 
immittance tree branches (7) and links (L). 

Applying the Kirchhoff  current law (KCL) for  each fundamental 
cut-set and the Kirchhoff  voltage law (KVL) for  each fundamental  loop 
arranges a SFG. The unknowns of  the system are the link currents and the 
tree branch voltages. The SFG of  a stranded and a solid conductor is 
shown in Fig, 5.84. The Signal Flow sub-graphs of  the circuit of  Fig. 5.83 
are represented in Fig. 5.85. Table 5.7 shows the equivalencies between 
the SFG and the matrix calculus. 

Table 5.7. Equivalence between circuh theory, SFG and matrix calculus. 
circuit analysis signal flow  graph matrix notation 

Kirchhoff  cuirent law cuirent nodes DI = 0 
Kirchhoff  voltage law voltage nodes g y = Q 
branch relations vertical connections V = Z I • I = Y V 
cut-set Uansfomiation  ^„^¡„^ . ».. = - o i . l . - D ^ . I , 

loop Uansfomation  V,. = - B ^ . V - B , , , V^ 

eliminate V , V , = ZI^ ; = YV., 
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Fig. 5.83. Electric circuit with a) stranded and b) solid conductors. 

sir 

'wl 

sol 
w 

A 

Fig, 5.84. SFG of  a a) stranded and b) solid conductor. 

Fig. 5,85. Non-coupled signal flow  graph. 

Joining the graphs does not change the graph nodes so long as the 
dependent nodes of  the first  graph correspond to source nodes of  the 
other graph and vice versa. Therefore,  branch current-voltage relations 
(BCVR) are added either as impedances or admittances (Fig. 5.85). Two 
dependent nodes are joined together to one zero node by changing the 
sign of  all incoming branch weights of  one of  the sub-graphs. The former 
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unknown of  that node disappears. This happens for  the stranded 
conductor links and the solid conductor tree branches (Fig. 5.86). 

Fig. 5.86. Coupled signal flow  graph. 

Combining magnetically coupled branches causes three difficulties: 
• Stranded conductor tree branches are described by a dependent 

current (Fig. 5.85a). 
• Solid conductor links are described by a dependent voltage (Fig. 

5.85b). 
• The coupling terms are not symmetric. 

Three operations can solve the above mentioned problems: 
1. Partial cut-set transformation 
The preferences  while choosing tree branches result in a 
fundamental  cut-set associated with a stranded conductor tree 
branch which contains only current sources and stranded conductors. 
A partial cut-set transformation 

(5.245) 
contracts the graph in direction a (Fig. 5.86). The current of  the 
stranded conductor tree branch is expressed as a combination of 
independent currents and other stranded conductor currents (Table 
5.7). 
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2. Partial loop transformation 
A fundamental  loop associated with a solid conductor link only 
exists of  voltage sources and solid conductors. A partial loop 
transformation 

= (5.246) 
contracts the graph in direction p (Fig. 5.86). The voltage of  the 
solid conductor link is expressed as a combination of  independent 
voltages and other solid conductor voltages. 
3. Symmetrising the system 
A contraction of  the BCVR (direction y in Fig. 5.86,Table 5.7) 
leads to a compact signal flow  graph (CSFG) (Fig. 5.87). 

t̂lr "̂ slr* 

Fig. 5.87. Compact signal flow  graph. 

From the CSFG, the coupling matrices are extracted in a simple 
way. The unknown graph nodes become system unknowns. The 
dependent graph nodes represent matrix equations. The coupling terms 
are kept symmetric. Compared to tableau analysis, MNA and CMNA, a 
reduction of  additional circuit equations is obtained. Multiplying the 
circuit loop equations with x and the circuit cut-set equations with - x 
leads to the coupled field-circuit  matrix 

(5.247) • K - F " "A H 

- F ^ ;tS. C 
where 

S = 

-K 0 
0 -Z. 

g : 0 
0 Y, 

with 

c = K I . V , v j 

(5.248) 

(5.249) 
(5.250) 
(5.251) 
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and 
(5.252) 

(5.253) 

In the case of  a quasi-static problem, K is complex symmetric. S is 
symmetric because B,^ = -D^^ and that R ^ , R^., G ^ , G^, , Z^ and 
Ŷ  are diagonal matrices. 

5.9.7 Solution of  the system of  coupled equations 
Particular attention must be paid to the solution procedure of  the coupled 
system of  FEM and circuit equations. The matrix obtained for  a 2D time-
harmonic solution coupled with an electric circuit described with the 
proposed method is complex, symmetric, has no zero diagonal elements 
but is not hermitian. 

The FEM block is positive defmite  and the circuit coupling block is 
negative defmite.  Therefore,  the conjugate gradient (CG) method can not 
be used. Other suggestions are the bi-conjugate gradient (BiCG) method, 
the conjugate gradient method on the normal equations (CGN), other 
orthogonal Krylov-subspace methods and block elimination schemes 
(EES). 

5.9.7.1 Conjugate gradient on the normalised equations Instead 
of  solving the system 

AX = B , (5.254) 
the system 

A'AX = A'B (5.255) 
is solved. The matrix is hermitian. 

5.9.7.2 Block elimination schemes Due to the fact  that the different 
parts of  the matrix have different  properties, it is advantageous to split up 
the matrix into several blocks. By matrix calculus, some block 
elimination schemes can be derived. The kind of  elimination is dependent 
on the criterion to divide the matrix. 

The system of  equations can be partitioned as; 
A 1 B X r" 

— — - | — 

B^ 1 C Y s 
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where A is a sparse matrix with the same dimension as the mesh, C is a 
full  matrix with all circuit equations and B is a full  matrix containing the 
coupling terms between the FEM magnetic field  description and the 
circuit equations. 

The system can be written as: 
(C-B^A-B)Y = S-B^A-'R (5.257) 
(C-B^P)Y = S-B^Q (5.258) 

The vector Q and each colunm of  P can be calculated by 
AQ = R (5.259) 
AP,=B, (5.260) 

using an iterative equation solver for  sparse systems. The number of 
systems that has to be solved in this manner equals the amount of 
network unknowns plus one. This is an important reason for  describing 
the electric circuit with as few  unknowns as possible. 

Another method separates the complex equations (these are the 
equations in the solid conductor regions and the electric circuit equations) 
from  A. This results in dividing the system matrix in a real and a 
complex part. 

(5.261) 

The system of  equations can be written as: 
A X = R - B Y 
AM = V-BN (5.262) 
(c + yo). (Y + ;-N)= S + J-W - B̂ (X + YM) (5.263) 
The system can be solved with the unknowns X,M,Yand N by 

iteration. 

5.9.8 Two examples 
In the first  example, eddy currents are induced in a conducting plane, 
passing between two symmetric inductors (Fig. 5.88). The external circuit 
is shown in Fig. 5.82. In the second example an induction machine at 
start-up is analysed (Fig. 5.89). Stator windings and rotor bars are 
connected as shown m Fig. 5.90. The numbers of  additional circuit 
equations for  the different  methods are shown in Table 5.8. The structure 
of  the matrix is shown in (Fig. 5.90). 

Table 5.8. Number of  circuit equations. 

A B R + jV' 
B ' T c + Y D . Y + / N S + Y W 

circuit analysis tableau MNA CMNA SFG 
inductor 13 5 4 2 
induction motor 166 46 43 31 
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excitation coil (stranded conductors) 

movmg 
conductor 

Fig. 5.88. Plot of  the equipotential lines of  an inductor and a conducting plane 
moving at 10 m/s to the right side. 

Fig. 5.89. Equipotendal plot of  a 50 Hz time-harmonic solution for  an induction 
motor. 
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Tree branch 

Link 

Fig. 5.90. Electric circuit of  a) the stator and b) the rotor of  an induction motor. 

circuit 
equations 

Fig. 5.91. Matrix structure of  a 50 Hz time-harmonic solution of  the induction 
motor example. 
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5.9.9 Transient electromagnetic problem 
The partial differential  equation for  a two-dimensional transient magnetic 
problem is: 

ot 
(5.264) 

To stay in the same notation as in section 5.7 using the relative 
reluctivity v, we can write: 

V.  a v„ 
and the functional  is: 

i n v„ a dQ. 

(5.265) 

(5.266) 

5.9.9.1 Functional within an element The functional  within an 
element becomes 

J'^^A 
a dQ. 

Evaluating the third term yields: 

CT' 
CI "o i. a 

with the matrix entries R' 

o-A ^ . . V ] 
M 2 

(5.267) 

(5.268) 

(5.269) 

5.9.9.2 Time stepping The system of  equations in matrix-vector 
notation can be written by: 

KA + R — - T = 0. 
a 

(5.270) 

The time discretisation can be applied to the Galerkin approach in the 
time domain. The solution is only computed at discrete points in time, 
spaced in finite  intervals A/, the time-steps. First order shape functions 
are chosen for^i  and Tas functions  in time. 

A(/)=RA, + (L-RK-. 



www.manaraa.com

154 

with 

and 

then 

T = -
t-t Jt-i _ 

Al 
(5.272) 

(5.273) 
dt  dz  dt  M 

If  the Galerkin approach is applied with r as the weighting function 

+ + ( l - r ) r , , | d r = 0, (5.274) 

'2K ^ 
. 3 ""AU 

A.+ 
(K  R^ 

3 Atj 13 3 ) 
= 0 . (5.275) 

This corresponds to a standard central difference  formula.  By 
introducing a more general set of  weighting functions  other difference 
schemes can be obtained. (5.275) can be generalised by using the 
parameter«. 

A(r) = a r A , ^ ( l - a . K - . 276) 

Equation (5.275) can be written in a general form: 

' ' ( l - a ) K - ^ l A M - K + ( l - « ) T , J = 0 .(5.277) aK+' 
At) 

A . + 
AtJ 

With a = 0 the forward  difference  Euler method is obtained. This 
approach is an explicit method because the term KA is evaluated at the 
beginning of  time interval At. 

K - — V m (5.278) At AtJ 
a = I gives the backward difference  fully  implicit method since the 

term KA  is evaluated at the end of  the time interval Ai. 

At) At 
The Crank-Nicolson scheme is obtained for  a = 1/2 

f i K ^ l 
U A'J 

A . = ( o T , + ( l - a ) r J - I k - « 
2 At 

(5.279) 

(5.280) 

and for  a = 2/3 the Galerkin scheme of  (5.275) is obtained. 
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Particular attention must be paid to the choice of  the value of  a 
because it influences  the stability and the accuracy of  the numerical 
results. 

5.9.9.3 Stability and accuracy Stability is important when time 
stepping is used for  the solution of  partial differential  equations. By using 
the time-stepping formula  eq.(5.277), the scheme is unconditionally 
stable for  a ^1/2. The stability does not prevent oscillations, but 
guarantees that oscillations do not grow out of  control. An oscillation-free 
scheme is the fully  implicit method with a = l while for  all values 
1/2 ^ a < 1 the implicit scheme oscillates if  the time-step Ai is too large. 
The stability limit for  a < \jl has the form: 

At^r—W  (5-281) 
k 

with 

— the difiusivity,  AZ, the characteristic length of  the elements and y a 
k 

numerical constant which depends on the elements used and on the 
choice of  a . 

The error e^ in the approximation of  the time derivative is for  a = 1 
and a = 0, i.e. for  the fiilly  implicit and the Euler explicit methods, of  the 
order 

e,=0{At)  (5.282) 
for  a = \ / 2 ; i.e. for  the Crank-Nicolson method it is of  the order: 

e ,=o((Aiy) (5.283) 
Therefore,  the choice a = 1/2 is advantageous, since it corresponds 

to an implicit method which is unconditionally stable and gives thus 
second order accuracy for  the time integration. On the other hand, the 
value a = 1 gives only first  order accuracy for  the time integration but 
completely avoids numerical oscillations even with large time steps. Thus 
a value of  a = 1/2 may be used, with a relatively small time step, in order 
to obtain an accurate solution, A value of  « = 1 can be used with a large 
time-step to obtain a less accurate solution to estimate the transient 
behaviour of  the problem in principle. 

5.9.9.4 Slow motion We will discuss motion problems with a static 
magnetic field  and with a uniform  moving Cartesian geometiy at 
relatively low speed v: 
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Problems considering high speed with the solution of  this A-formulation 
will be discussed. 

The first  term of  the differential  equation is called the diffusion 
term. The second term is called the convection term. The right-hand-side 
is called the load. 

Unlike the previous formulations,  the variational principle 
corresponding to the solution of  the differential  equation is not known. 
Therefore,  a weighted residual method has been applied. 

Galerkin approach 

The multiplication of  the differential  equation with the weighting 
functions  Wj yields: 

- d Q - J—V • VAw, d Q - j— VFw, d n = 0 . (5.285) 
n n n Vj 

The magnetic vector potential A is written in terms of  the basis 
functions  Nj : 

A = (5.286) 
J 

In a Galerkin approach the same functions  are chosen as weighting 
functions.  The first  term is then written as: 

- = JViV, • (5.287) 

The third term can be evaluated by: 

- J — = VK<'>|jV,dQ (5.288) 
a Vj . /•! V, i 

The second term is: 

_ = fv-W^^.dfM,  (5.289) 

The Galerkin approach and the variational technique give the same 
result for  the diffusion  term and the load term. In the case of  linear basis 
functions,  the integral in the convection term becomes: 

= (5.290) 
v„ 6 
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System of  equations 

The system of  equations is given by: 
(K + M)A = T (5.291) 
This system is not symmetric because: 
Mf^M';;^  (5.292) 
Appropriate iterative methods to solve the system of  equations are 

minimal residual methods such as BiCG and GMRes. 
GMRes has the problem that the memory requirement increases with 

the number of  iteration steps. Therefore,  restarted versions can be used. 
Petrov-Galerkin schemes such as BiCG are fast  iterative equation solvers 
but have the disadvantage of  breakdowns while solving the system. 

External circuits 

The current density in a moving conductor is calculated as 
J  = ~d^V-avVA  (5.293) 
In the case of  a stranded conductor, the current density is assumed to 

be constant. The voltage drop over a stranded conductor with turns 
moving at the speed v is 

N  P N  i> , 
V̂  = + iL i U • V.4dii (5.294) 

A^ A 
In the case of  a solid conductor, the voltage is assumed to be 

constant. The current through the solid conductor is 

= ^ V^-fav-  VAd n (5.295) 
£ n 

If  the currents through one or more stranded conductors or the 
voltages through one or more solid conductors are unknown, extra circuit 
equations are needed to describe the fiill  behaviour of  the model. The 
choice of  the circuit unknowns, the construction of  the extra equations 
and the coupling terms is done by the signal flow  graph methods already 
described for  the case of  time-harmonic magnetic fields.  The non-moving 
conductors, however, have to be treated in a slightly different  way. No 
induced effects  appear in these conductors so long as the geometry does 
not change while moving. 

Example 

A conductive plane moves between two inductors. If  the speed of 
the plane is zero, the solution corresponds to the static solution (Fig. 
5,92). If  motion is considered, the flux  lines are pushed away in the 
direction of  the motion (Fig. 5.93). If  speed increases, the flux  lines have 
less space to pass through the conducting plane. For very high speeds. 
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numerical problems result in unstable solutions (Fig. 5.94). In the figure, 
a separated closed flux  line occurs. Up-winding schemes promise to 
surmount this difficulty.  For further  details please refer  to the literature. 

Fig. 5.92. Static solution of  a non-moving conductive plane. 

Fig. 5.93. Static solution of  a conductive plane moving at 10 m/s to the right 
side. 

Fig. 5.94. Static solution of  a conductive plane moving at high speed to the right 
side. 
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5.10 Post-processing 

Using arbitrary potentials instead of  physical quantities and the associated 
functionals  in the formulation  of  the equations, raises the need for  a 
closer look at the post-processing. The user of  a FEM system desires to 
analyse a physical system in terms of  field  strength, energies, forces, 
densities etc. The potential itself  does not necessarily have a physical 
meaning. In some cases, such as in the electrostatic and in the thermal 
analysis, the potential represents the electric potential and the temperature 
respectively (Table 5.9). Therefore,  most of  the interesting quantities in 
the post-process are numerically derived quantities. The type and order of 
the shape function  of  the potential over an element (linear, quadratic, etc.) 
and the element type (nodal, edge, etc.) determine the achievable relative 
accuracy of  numerically derived values. The accuracy of  the results is 
influenced  by the discretisation and, related to it, the choice of  the error 
estimator for  an adaptive mesh refinement,  if  applied. Another difficulty 
arises in the calculation of  lumped parameters (inductances, reactances, 
etc.), used in non-FEM analysis procedures, such as circuit analysis. 
Several different  definitions  of  these quantities may exist, as for  the 
inductance calculation of  linear and non-linear energy transducers. 

The aim of  this chapter is to provide an overview of  possible derived 
quantities, the necessary formulations  and ways of  influencing  the 
accuracy of  the results. 

5.1D.1 Potentials 
As shown in the previous chapters, the chosen potentials for  the different 
types of  problems do not necessarily directly represent a physical 
quantity. The formulations  for  defining  these potentials are chosen such 
that their application might impose simplifications  in the formulation  of 
the functionals  or the choice of  the gauges. A selection of  problem types 
and the physical meaning of  their potentials are collected in Table 5.9. 

Table 5,9. Physical meaning of  selected potentials. 
Type of  aoaiysis differential  equation type of  potential physical meaning 

electrostatic = scalar electric potential 

magnetostatic vV'yi = n o n e . B = V x A 

thermostatic AV'T" = Q scalar temperature 

time-harmonic vV^A—  ÌCOcrA  = ~J  vector induced currents 
magnetic ^ related to A 
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The achievable accuracy of  all derived values cannot be better than 
the accuracy of  the computed potentials. The latter is determined by the 
choice of  the element type, the shape function  and the functionals  used. 

5.10.2 Energies 
To calculate particular quantities for  the elements of  lumped parameter 
models such as inductivities, reactances, resistors etc, or to compute local 
forces  and/or torques acting on bodies present in a magnetic field, 
energies are used to determine such quantities. There are various 
definitions. 

5.10.2.1 Stored energy Energies are global quantities. It has already 
been discussed that in the fmite  element method, using the variational 
technique, an energy term, the functional,  is minimised. This energy term 
does not necessarily have the meaning of  a physical energy, for  example 
a stored energy. Potentials are chosen in such a way that the 
minimisations of  the related functional  approximate the solution of  the 
partial differential  equation. In the case of  a Laplace equation, the 
functional  is: 

= (5.296) 
2o 

For a Cartesian, non-linear magnetostatic problem the stored 
magnetic energy can be calculated by: 

\0 
iQ (5.297) 

or for  linear materials, with the material reluctivity Vr: 

W = — \ v B ' d n . (5.298) 

Equations (5.296) and (5.297), (5.298) are similar. The total stored 
energy in the overall system, as an integration value is more accurate than 
any locally derived quantity. 

Functionals for  other differential  equations can have additional 
terms in the integrand, but the similarity with an energy formulation  is 
still maintained. The functional  for  the Poisson equation includes such an 
additional term: 

f{A)4 
/ 

2 à 
VA  -2 J.A \ 

d n (5.299) 
"0 / 

The second term of  the integrand can be thought of  as being related 
to the energy input from  the supply. In linear systems the energy input 
from  the supply is calculated from  the integral over the coil area by: 
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W = . (5.300) 
2 0 

For linear systems, the stored energy equals the energy input from 
the supply. This only holds if  all potentials of  Dirichlet boundaries are set 
to zero, i.e. no additional flux  is forced  into the system at the boundaries. 
This last expression is useful  even for  non-linear problems for  the 
calculation of  flux  linkages and inductances in special cases, when the 
behaviour with changing current is important. The functional  used for 
problems with linear permanent magnets is: 

i nV 
d n . (5.301) 

Therefore,  the third term in the integrand is related to the energy 
output from  the permanent magnet to the system. 

Most electrostatic problems are linear. The stored energy in an 
electrostatic model is: 

= . (5.302) 
2 n 

5.10.2.2 Co-energy Associated with the energy is the concept of  co-
energy (Cartesian geometry, magnetic problem): 

£ f  £ 
¡v^BdB  dQ . (5.303) 

i\o y 
This integral is effectively  the "surface  under the BH-curve". The 

co-energy is useful  for  force  calculation. In problems with linear 
materials and no permanent magnets, the value of  the co-energy and the 
energy are equal. 

5.10.3 Local field  quantities 
As shown in Table 5.9, some local field  quantities are directly 
represented by the particular potentials. In this case, their accuracy is 
determined by: 

• the simplifications  made to the applied differential  equation 
• the choice of  the gauges 
• the choice of  the element type 
• the choice of  the shape function 
• the accuracy of  the equation solver 
• the quality of  the discretisation. 

Therefore,  the error convergence of  these quantities is of  the same 
order as that of  the related potentials. An example to illustrate this: 
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Using the 2D magnetic vector potential, the normal component of 
the flux  density through the edge of  an element is always continuous. The 
flux  through the edge equals the difference  of  the potentials at the 
adjacent nodes (the unit of  the vector potential is Wb/m). This allows 
calculation of  the flux  through a line span between two points just by 
calculating the difference  of  the potential value at the end-points. 
Practically, this could be applied to the calculation of  flux  linkages. 

5.10.3.1 Numerically derived local field  quantities Most local field 
quantities, as well as other derived quantities such as force,  require 
numerical derivatives of  the potentials. Using nodal elements, the 
potentials are known at each node as a result of  the approximate solution 
of  the partial differential  equation. The change of  the potential inside one 
element is determined by the choice of  the shape function: 

A = a + bx + cy . (5.304) 
Knowing the potentials at the nodes of  the elements, the coefficients 

fl,  b and c can be calculated using this basis function.  The definition  of 
the potential now determines the required mathematical operations 
yielding the required local field  value. In two-dimensional magnetostatic 
problems, the vector potential A is defined  by: 

B = VxA . (5.305) 
Using such linear shape functions  to approximate the vector 

potential, the jc- and ^^-components of  the flux  density inside a finite 
element are calculated as follows: 

The flux  density B inside an FEM model is piecewise constant 
(5.306) if  a continuous distribution of  the vector potential is assumed. 
Accounting for  this and assuming a small value of  /j as the maximum 
characteristic diameter of  a fmite  element, the FEM is convergent 
towards the exact solution of  order The constant q describes the 
polynomial order of  the elements used. With e as the global error, the 
order of  convergence for  the potential solution is 

(5.307) 
The factor  C is independent of  the size h of  the elements and 

depends only on the 
• type of  discretisation 
• choice of  shape function 
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Field  computation and  numerical techniques 

• smoothness of  the exact solution. 

Equation (5.307) identifies  the convergence problem transferred  into 
the approximation problem. Using first  order linear shape fonctions  the 
rate of  convergence is of  order 0 { h \ Deriving the field  quantities from 
the potential formulation  numerically results, in a rate of  convergence 
OQi) for  those quantities, i.e. a loss in accuracy of  one order compared to 
the potential solution. Using these field  quantities this inherent 
inaccuracy influences  the results of  force  calculations. This fact  identifies 
the difficulty  in obtaining accurate field  quantities as a problem of  the 
order of  convergence of  the numerical method used. To illustrate this 
fact,  consider a domain containing a single linear material. By applying 
Dirichlet boundary conditions of  different  values to the left  and the right 
domain border, a constant flux  is imposed. 

Fig. 5.95. a) Continuous vector potential; b) piece wise constant flux  density. 

The loss of  one order of  accuracy due to the numerical 
differentiation  is inherent and effects  all quantities based on such values. 

There are three possibilities for  possibly increasing the accuracy of 
local field  quantities for  the end-user of  an FEM program package: 

• Compute the model with higher order (shape function)  elements. 
• Increase the quality of  the discretisation (adaptive mesh 

refinement). 
• Lower the error bound where the equation solver stops. 

The latter point is listed for  practical reasons. Especially for  eddy current 
and non-linear problems, a low error bound is absolutely essential. 
Therefore,  it is a good choice to set a stopping margin close to the 
machine accuracy. If  a high accuracy of  the local field  quantity is 
required, the relative error of  the desired quantity should be monitored. 
The actions listed in the first  two points of  the above list can help to 
achieve this. 
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• If  higher order elements are available in the code, rerun the 
computation by increasing the order of  the elements in each step. 
Plot the desired quantity versus the number of  steps. The relative 
accuracy can be judged from  the convergence of  the value towards 
a stable value. 

• Monitor the convergence of  the desired quantity over several steps 
of  adaptive mesh refinement.  Particular attention has to be paid to 
the choice of  the error estimator. Some error estimators might have 
advantages for  global quantities, but may not be appropriate for  a 
local field  value. The error estimator has to have effect  in the 
region of  interest. 

• The points listed above can be combined. 

Another possible way to increase the accuracy of  local field 
quantities is discussed in the next section; re-calculation of  the field 
distribution in parts of  the domain by a local post-process. 

Two further  points concerning the accuracy of  local field  values 
must be mentioned. 

• Field values in the vicinity of  singularities have a large error. 

Adaptive mesh refinement  minimises the effect  of  these regions with 
respect to the global solution, but the problem does not vanish. 

• Smoothing techniques must be applied veiy carefully.  They are 
popular as they seem to establish a principle in nature: field 
distributions are smooth. The danger lies in the fact  that almost 
all of  the smoothing techniques are based on geometric 
algorithms rather then on the underlying field  equations. 
Smoothing may lead to just the opposite of  what is intended: a 
loss of  local field  information. 

5.10.4 Forces and torques 
Analysing electromagnetic actuators such as electrical machines, the aim 
is often  to find  next to the field  quantities the electromagnetic forces 
generated by the studied device. Various methods are in common use. 
Different  methods, then application and limits are discussed. 

5.10.4.1 Lorentz force  A frequently  encountered problem is that of  a 
current-carrying conductor in an external magnetic field.  The differential 
force  equation may be written: 

dF = /(dixB) (5.308) 
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where d^ is the elementary length in the direction of  the current I  . 
Equation (5.308) is derived from  the fundamental  force  relationship 
between two moving charges. It represents the magnetic part of  the 
Lorentz force.  If  the conductor is straight and the field  is constant along 
its length, the differential  force  may be integrated. In a two-dimensional 
magnetostatic finite  element model, the field  pomponents are located in 
the plane, whereas the current is oriented perpendicularly to it. In this 
case (5.308) can be simplified  to the following  expression for  the 
conductor of  length i : 

F = BU  . (5.309) 
Those force  equations are theoretically valid only for  a conductor in 

a magnetic field.  However, in practice it might be used even for  the force 
calculation in electrical machines with many slots containing current, 
provided that B is the average value in the air gap. This simplification 
already indicates a loss of  accuracy, as local information  about the field  is 
not taken into account. This approach combines analytical and numerical 
field  analysis at a rather simplified  level. 

5.10.4.2 Virtual work One of  the most popular methods for  the 
calculation of  forces  is based on the spatial rate of  change of  the stored 
co-energy in the model. The component of  the force  F^ in the direction of 
the displacement s is: 

dW  dW 

The accuracy of  the co-energy calculation is rather high because, as 
mentioned before,  the energy is computed very accurately. It can be 
expected that the force  calculation based on the co-energy should be 
accurate as well, provided the following  requirements are met. 

• The method is valid for  differential  small displacements, which 
must be translated in terms of  the dimensions of  the model. 

• It is assumed that the magnetic flux  remains constant in the two 
FEM models necessary to compute dWco-

The disadvantage of  this method is the need for  two finite  element 
computations to obtain a single force  value. 

A corresponding expression for  the torque T  associated with an 
angular rotation 0is useful  for  the electrical machine analysis: 

dW  dW 
= . (5.311) 

de  de  ^ ' 
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5.10.4.3 Maxwell stress tensor Probably the most common approach to 
determine electromagnetic forces  is known as the Maxwell stress tensor 
method. In contrast to the virtual work method, based on the energy, the 
Maxwell stress tensor method describes the forces  directly in terms of  the 
magnetic field  strength. This method is advantageous, as forces  can be 
determined with only one FEM-solution. 

The Maxwell stress approach computes the local stress at all points 
of  a bounding surface  and then sums the local stresses (using a surface 
integral) to find  the overall force.  The expression for  the Maxwell stress 
tensor can be derived fi-om  (5.308). In three dimensions the force  is a 
surface  integral: 

F = (5.312) 
where the surface  vector dS  is taken as the outward normal on S. In two 
dimensions, this reduces to a line integral with the magnetic stress tensor 
T written by: 

T = 
BA 

" 2 

(5.313) 

The expression given above may be rewritten in terms of  the normal 
and tangential components of  flux  density at each point on the closed 
contour C along which the line Integral has to be evaluated. Therefore  the 
associated components of  force  for  an axial length i is: 

(5.314) 

These expressions assume the following  notations for  the directions 
of  B„ and B,: for  a contour parallel to the j^-axis, and traversed in the 
direction of  increasing;/, B„=Bx and B,=By. Also the component values of 
(5.313) have units of  stress; they do not necessarily give correct local 
stress values. However their closed line integral has the physical meaning 
of  the total force  on the enclosed object. The contour must be entirely in 
air and not pass through any other material. In many cases the contour 
does not need to be closed. Parts of  the closed contour may be skipped if 
their integral value is negligible. The expressions for  the force  computed 
on a single straight line are: 
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7 . (5.315) 

The torque on an arc of  radius r is similarly given by: 

r = —J5.5 , rd/ . • (5.316) 

Similar expressions may be used for  electric field  problems by 
substituting E for  B and ep for  \tfJo. 

The advantage of  the Maxwell stress tensor method over the virtual 
work method recommending only one FEM-solution is lost when the 
accuracy of  the results is compared. As the method is based on derived 
quantities, particular attention has to be paid. The loss of  one order of 
accuracy compared to the potential solution can lead to large errors, 
especially when computing the tangential component Fy (5.315) and the 
torque T  in (5.316). In electrical machines the reason for  this is the huge 
difference  of  the field  quantities in magnitude when comparing normal 
and tangential component. The normal components can differ  some 
decades. This yields large truncation errors in the computed force. 

The practical unplementation of  the algorithm introduces additional 
error sources. The stress values have to be evaluated at specified  points 
along the contour, usually equidistantly distributed. If  such a point is 
positioned exactly at the edge between two elements, the numerically 
derived B is double-valued (piecewise constant B for  first-order  shape 
function). 

The problem of  accuracy of  the Maxwell stress tensor method and 
possible ways of  improving it, have been extensively discussed in 
literature. Most of  the proposed enhancements are based on smoothing 
algorithms or on different  integration schemes. One of  the most common 
methods proposes calculation of  the force  using different  contours and 
averaging the result. This method can help to evaluate the margin of 
error, but it does not give any absolute error bounds or even an 
enhancement of  accuracy. 

5.10.5 Enhanced accuracy of  finite  element field  quantities 
It will be focused  on the practical application of  the static electromagnetic 
field  solution of  Laplace's equation in a local post-process to increase the 
accuracy of  an existing solution obtained by the standard finite  element 
method using first  order elements. Advantages and drawbacks are 
discussed. 
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The Laplace equation V^A = 0 in two dimensions, expressed in 
polar co-ordinates (r,0) is: 

— ( r—) + = 0 

J  d'A  dA d^A „ 
r ' — - + r — + — - = 0 

dr^  dr 
Assuming linearity and uniformity,  and applying a Fourier series to 
eq.(5.317), yields the harmonic function: 

<D) = ̂  + J r " {«„ cos(n(D) + sin(/icD)} (5.318) 
2 -1 

with its coefficients: 

= — J.4(/F,<I>) • COS(H<I>) DO) 

I . (5.319) 

mi 0 
The procedure for  solving eq.(5.318) describes the solution of  a 

Dirichlet problem on a circle with given boundary values at its 
circumference.  The coefficients  a^ and ß^ can be calculated usmg known 
potentials A = yi(Ä,0) at the circumference  of  a circle with radius R. 

Now a fmite  number of  N  equi-angularly arranged points are applied 
onto the circumference  of  the circle. 

= i = • (5.320) 
With N  boundary potential values i/; known on the circumference 

and according to the properties of  harmonic functions  the first  term in eq. 
(5.318) can be written by: 

A = . (5.321) 

The Fourier coefficients  are rewritten as follows: 

(5.322) 

With the Fourier series (5.318) and their coefficients  eq.(5.322) the 
potential in the centre of  a circle can be computed knowing only the 
boundary potential values on the circumference  of  the circle. 

Using this approach inside a finite  element solution, the value of  the 
potential of  a field  point now depends on the solution in several fmite 
elements. Thus, local numeric errors in single elements have a relatively 
small influence  on the solution in the considered field  point. Applying 
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(5.318) derivatives at the centre of  the circle can be calculated in a closed 
analytical form,  avoiding numerical differentiation. 

aA 

ac 

= = 

= a. =B. = 

N  R ... 

2 

jft 

(5.323) 

N-R 
£/i,cos<D, 

The idea is to adapt the described process, of  solving a Dirichlet 
problem on a circular surface,  to determine the vector potential in a point 
Pi of  a discretised fmite  element domain (Fig. 5.96). Ri is the radius of 
the considered circular surface  and the dots at the circumference  indicate 
the points of  known vector potential values computed beforehand.  These 
points do not have to be nodes of  the actual fmite  element mesh. This 
feature  makes the technique very advantageous to automatic and adaptive 
meshing schemes in which the user can not guarantee the control of  the 
mesh and especially its symmetry. 

To obtain the potential distribution at a given contour inside a fmite 
element domain, multiple circles have to be evaluated. Overlapping 
circles guarantee a continuous solution in the considered region after  the 
post-process. 

The numerical shape of  (5,318), (5.321) and (5.322) enables an easy 
implementation of  the procedure in a fmite  element program package. 
The derivatives in the centre of  the circle are represented by the Fourier 
coefficients.  Thus, no additional computational effort  is necessary to 
compute the flux  density in the centre. 

Fig. 5.96. Multiple circles to determine the vector potential on a contour. 

The local solution of  the Laplace equation inside an air gap of  an 
electromagnetic device, using a Fourier series approximation for  the 
vector potential, results in a significant  increase in accuracy of  the 
derived field  quantities. To compare the results obtained by the local field 
evaluation to the conventionally obtained field  quantities of  first  order 
elements, Fig. 5.97 shows the computed magnetic flux  density derived by 
B = VxA  and Bx using the Laplace approach. For this application of  the 
local Dirichlet problem, 24 potential boundary values on the 
circumference  of  the circle were used. 
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Applying such field  quantities to the Maxwell stress tensor to 
compute the local forces  acting on bodies inside an electromagnetic field 
yields values of  higher accuracy. To obtain the torque of  an electrical 
machine, the local force  values are integrated along a contour in the air 
gap-

a) b) 
Fig. 5.97. a) Computed vector potential inside the circular FEM domain and b) 

the resulting flux  density derived by applying the local post-process. 

Another approach to compute the torque more accurately, uses the 
values of  the magnetic vector potential on two concentric circles with 
radii Ri and Rq as boundary conditions (Fig. 5.98). Local field  values on 
the circular contour C with radius R,<r<R^  are calculated. 

Fig. 5.98. Local Dirichlet problem for  a cylindrical au- gap. 

If  the inner radius Rj is taken as a reference,  the general solution of 
Laplace's equation is: 

f 
r 

/ 

r COS(A<1))+Ì)̂  — sin(AO) 

Y 
CO 

(5.324) 

The coefficients  ak, ^k and are independently determined for 
each circular harmonic. A fast  Fourier transformation  (FFT) algorithm is 
used to express the magnetic vector potential at the boundaries as a series 
of  such circular harmonics: 
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(5.325) 

a. 

AJ 
'K 
A.-. 

(5.326) 

Once the magnetic vector potential at the contour C is known, the 
normal and tangential component of  the magnetic flux  density can be 
determined: 

B^r,^)  = ti-ka,  ^sin(AO)+  kb, ^cos(^o) 

FT  R, R, 

(5.327) 

J?' ^ 
r f  J 

The tangential force  component FT  results in the torque T  of  the 
device. It can be shown (Salon Mertens et al. that the value of  the 
torque is given by 

Mo 
(5.328) 

being independent of  the radius r of  contour C. It is not necessary to 
calculate the normal and tangential component of  the magnetic flux 
density on the contour resulting in a faster  algorithm, when the overall 
torque is aimed at. The proposed method can easily be extended to time-
harmonic problems. If  all values are rms-values the torque is obtained by 
adding the torque calculated using the real- and the imaginary-component 
of  the solution. 

T = . (5.329) 
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This method has its advantage for  electrical machine analysis as it is 
suited for  small air gaps. By using eq.(5.329) the torque is evaluated 
directly, without the explicit calculation of  the flux  densities. 

Fig. 5.99. Equipotential plot of  the real component solution of  a 400 kW 
induction motor. 

The performance  of  this method is compared with the classical 
Maxwell stress tensor method using a model of  a 400 kW induction 
machine for  tests. 

Table 5.10. Data of  the 400 kW induction machine. 
induction machine data 

voltage 0-1950V 
rated current 154 A 
rated power 402 kW 
cos 9 0.91 
rpm 0-4350 
frequency 0-140 Hz 
number of  pole pairs 2 
number of  stator slots 48 
number of  rotor slots 40 
outer diameter 60 cm 
air gap length 1.5 mm 
measured torque T„ = 2733 Nm 

To ensure accurate results, a good trade-off  between mesh 
refmement  and using the enhanced post-processing methods is necessary. 
A relatively coarse discretisation in the air gap of  the induction machine 
was chosen (Fig. 5.100). 

With such a coarse discretisation, the Laplace-based method is less 
sensitive to the actual choice of  the contour inside the air gap than the 
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classical method. The air gap spans a region between an inner radius of 
0.186 m up to an outer radius of  0.1875 m. Fig. 5.101 shows the variation 
of  the calculated torque. Contours with different  radii are chosen. For the 
Laplace-based method, the inner and outer radii are varied 
simultaneously. Therefore,  the value of  the torque varies symmetrically 
towards the middle of  the air gap. 

Fig. 5.100. Detail of  the discretisation in the air gap. 

The variation of  the calculated torques using the enhanced method is 
much smaller when compared to the classical method. It must be stated, 
however, that an appropriate mesh refmement  scheme would lead to 
better results even for  the classical torque computation. 
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Fig. 5.101. Variation of  the torque calculated along different  contours inside the 
air gap. 

The rate of  convergence of  the relative error indicates that the 
required number of  sample points for  the enhanced method can be chosen 
to be substantially fewer  than for  the classical method. As shown in Fig, 
5.102, the smallest relative error is computed with 16384 points using the 
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classical Maxwell stress method, instead of  2048 points by using the 
Laplace-based approach. 
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Fig. 5.102. Rate of  convergence of  the relative error. (Variation of  the number of 
sample points.) 

The same basic idea, as used in the 'chcle' approach, yields the 
local solution for  the three-dimensional field.  The local field  problem is 
now defined  by the knovra potential values equally distributed along the 
surface  of  a sphere assumed to be the boundary potential values of  the 
local field  problem. According to the co-ordinate transformation: 

x = rsin^cos^ 
;' = rsin0sin^ 
z = rcos9 

Fig. 5.103. a) Sphere with b) co-ordinate system. 
a spherical co-ordinate system is applied (Fig. 5.103). Using the Laplace 
equation with the co-ordinate transformation  yields: 
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/ 

dr dr) 
1 d sin^- 1 ^A 

sin' 6 df 
= 0. (5.330) 

dO) 
Applying the theorem of  the separation of  the variables 

A[r,&,<!>)  = to (5.330), a general form  of  the functions 
R(f),  0(^) and <I>(̂ ) depending on the potential A can be written. Every 
solution of  the Laplace equation, being fmite  for  all is a solution of: 

= +6K<""')p;(cos^)-{acosmiS + ̂ sinmii) (5.331) 
where m=0(l)oo ,rt = m(l)<», a, b, a and P are constants. R'  is the 
associated Legendre polynomial of  the first  kind. To simplify  the 
notations, the surface  harmonics 

= /'"(cos0)'sinm^ 
are introduced. Assuming (5.331) to be a linear form,  the potential in the 
origin is fmite.  The constants Om.ni'") and pm.B(0 are linear combinations 
of  / and The summation 

A = /(0J)  = t Z K - • + • • (5.333) 
•••0 a«» 

is a solution of  (5.330). Here, the magnetic scalar potential A is 
completely determined by the constants and The aim is to 
calculate the magnetic flux  density at a point using known scalar potential 
values in its vicinity. Consequently a spherical volume with known 
boundary potentials at its surface  around this field  point is chosen to 
determine the field.  The known boundary potentials result, as in the two-
dimensional case, from  a previously performed  FEM computation and 
determine all constants in (5.333). To calculate the magnetic field 
quantities at the centre of  the spherical volume, the Laplace equation has 
to be solved locally and spherically around diis field  point with radius 
r=R. The boundary potential values are available only as single values at 
the surface  of  the sphere. To distribute them equally along this surface, 
the spherical co-ordinates ^ are divided into/and 0 into AT equal angles 
A^ and A0 respectively. 

. (5.334) 

t-i 
In order to satisfy  (5.333) accurately, the numbers of  Jand .iT must 

be sufficiently  large. On the other hand, large numbers increase the 
computational expenses rapidly. With respect to the computation time 
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and accuracy a good compromise has to be found.  Practical values for  J 
and K  are given in the following  section. 

Assuming ^ and d to be the co-ordinates in the local system with 
the interesting field  point at the centre of  the sphere, the coefficients  pin,a 
and can be determined by a Legendre decomposition using the 
boundary potential values: 

J  KR'  {n  + m\ ^ ' 
•/'."(cos^J-sin^, 

Retaining the local co-ordinate system in and the 
magnetic flux  density in the original global co-ordinate system, and 
calculating the derivatives at the origin of  the local co-ordinate system 
(Fig. 5.103) using 0 = 3-/2 and ^ = 0 in (5.333), yields: 

- A 
dA 
ac' 

dA 

<o.il,0) a-
(5.336) 

Analogous to (5.336) the derivatives, in y' are found  by taking 
i9 = ̂  = ff/2and  in z' by taking 0 = Oand ^ = in (5.333). With 
respect to (5.336), using (5.335) and with the Legendre terms: 

/i" (cos 6») = cos (9 
ii'(cos^) = sin6' 

the components of  the flux  density at the centre of  a sphere are explicitly 
rewritten by: 

3 Jt 

(5.337) 

- A 
IJKR 

3 Tt 
2 JKR 
3 Tt 

1.1 V /-I 

•sin'ft 

sin'ft (5.338) 

2J-K-R 
Using this local field  approach (5.338) by arranging multiple 

overlapping spheres at an arbitrary surface  or contour (Fig. 5.104), it is 
possible to obtain the required local field  quantities at this surface  with 
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the same accuracy as the previously by FEM computed potential values. 
The tetrahedron shown in Fig. 5.104 represents a part of  the three-
dimensional mesh of  the FEM domain. 

Fig. 5.104. Arrangement of  multiple overlapping spheres to obtain the local field 
values on an arbitraiy contour/surface  across the centre points of  the spheres 

inside a three-dimensional FEM domain. 

1) b) 
Fig. 5.105. Flux density distribution Bj, on the front  surface  of  F (see Fig. 5.106), 

a) computed by the classical direct derivation of  the potential and b) using the 
proposed post-processor method. 

ifitegialion  lurfice  f 

Fig. 5.106. Three-dimensional FEM model of  the test example. 

From Fig. 5.105 the difference  between the direct evaluation of  the 
potential and the new post-process operator is shown. Here B̂ , is 
computed for  a test example (Fig. 5.106) at the front  surface  of  F facing 
the permanent magnet cube. It is obvious that linear shape functions, 
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approximating the scalar potential, result in a piecewise constant flux 
density distribution (Fig. 5.105a). Computed forces  starting from  this 
type of  solution are unreliable. The local values of  plotted in Fig. 
5.105b show the expected continuous distribution computed using the 
new post-processor method. 
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Fig. 5.107. Comparison of  the convergence behaviour of  the FEM potential 
solution with both the direct derivation and the derivative-free  approach. 

In Fig. 5.107 the quadratic convergence, referred  to the 
characteristic length h of  a fmite  element, of  the FEM potential solution 
and the rate of  convergence of  the force  computations using both the 
classical and the new post-processing approach, is plotted versus the 
number of  tetrahedron elements. The same statement can be made for  the 
two-dimensional approach. The triangles in Fig. 5.107 indicate the 
theoretical gradient of  convergence eq.(5.307). The refmement  of  the 
three-dimensional discretisation is performed  in such a way that the 
elements are of  the same shape in every FEM model to obtain a regularly 
distributed mesh for  all cases. To compute the total force,  the Maxwell 
stress tensor is used integrating the force  density calculated in points 
equidistantly distributed by the density D on all six sides of  F. For the 
classical approach a density D=40 is chosen and in the case of  the new 
method, D is set to 7. The sphere parameters are J=K=15.  The integration 
surface  of  the force  computations is located in such a way that no plane 
of  r cuts through the nodes of  the FEM mesh. If  nodes coincide with the 
points of  the force  computation using the classical post-processor 
approach, this would result in a larger error due to the troublesome 
definition  of  normal and tangential field  components in a node of  an 
element. The gradient-triangles in Fig. 5.107 indicate the theoretical rate 
of  convergence for  the quadratic and the linear convergence case. It can 
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be seen as theoretically expected that the relative error in an energy norm 
of  the FEM potential solution converges quadratically, referred  to the 
specific  diameter h of  the elements eq.(5.307), by increasmg the number 
of  first  order tetrahedron elements. Due to the analytically described 
potential fimction  inside the local field  volumes, the resulting overall 
force  using this approach is of  the same order of  convergence. Therefore, 
no loss of  accuracy of  the derived fidid  quantities occurs. The 
convergence of  the total forces,  computed by the classical approach, 
indicates the expected linear behaviour. The accuracy of  the computed 
values is influenced  by the numerically-obtained derivatives. This shows 
that the results obtained by the classical method are inherently inaccurate 
when compared to the accuracy of  the potential solution. 

The use of  the proposed approach to enhance the accuracy of 
computed field  quantities starting firom  an existing potential solution 
demands an additional step durmg the post-processing of  the FEM 
analysis {Fig. 5.108). 

FEM 
polenliel solution 0(h )̂ 

direct derivation 2 IdoWt̂  ffie  taRrCHLET-
pwblga 
T 

derivative free 
approach 

0(h) field  quantities: 0(h )̂ I 
• flux  density 
• field  strength 1 •flux I 

J L 
force  computation: 
• Maxwell stress tensor 
• virtual displacement 
• other methods 

Fig. 5.108. Additional step during post-processing to enhance the acciu-acy of 
derived field  quantities. 

Having obtained a FEM potential solution, the user only has to 
define  the surface  of  integration T on which the field  quantities or forces 
have to be calculated. Defining  an arbitrary contour allows the 
computation of  field  quantities or forces  along it as well. For each plane 
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or contour the density D, the sphere parameter J,  K  and the radius R have 
to be set. The sphere parameter are problem-dependent and related to the 
geometry of  the device, i.e. the air gap width. The planes or contours 
should be centred in the air gap. A suitable value for  the diameter of  the 
single spheres is about 90-95 % of  the air gap width to have as many 
tetrahedron fmite  elements inside the sphere as possible. Including only 
one finite  element in the sphere results in no enhancements in accuracy of 
the derived quantity. To ensure a continuous field  solution, the density D 
should be chosen in such a way that the spheres overlap (Fig. 5.104). For 
the distance between two points on the surface  of  integration, it is suitable 
to choose the radius of  the sphere. 

J=K=A  J^K'm 
Fig. 5.109. Spheres with different  numbers for  the parameter J,  K. 

To define  the number and position of  boundary potential values 
distributed on the surface  of  each sphere, the parameters J  and K  have to 
be chosen. To ensure uniformly  distributed boundary values J is set equal 
to K.  In accordance with the results of  Fig. 5.105 and other test 
calculations a number J=Ji=[10 ...20] is sufficient  to meet the ratio 
between computational costs and accuracy. Fig. 5.109 illustrates by 
different  J=K  the position and number of  boundary potentials to 
approximate the local field  inside a sphere. 

5.10.6 Inductances in magnetostatic problems 
Quantities, such as inductances, resitances, etc. may be determined fi-om 
a numerical solution by several methods. It is just as in a laboratory, 
where a quantity may often  be measured in many ways eventually leading 
to different  results. Modelling hnpUes the simplification  of  the complex 
physical phenomena determining the behaviour of  a technical device. A 
FEM model of  a device serves the purpose of  predicting certain aspects 
of  its behaviour while neglecting others. The first  simplification  is 
introduced by the choice of  the formulation  of  the equations to solve. 
However, even if  the basic formulation  is appropriate, different  results 
may be obtained in the post-process if  inappropriate definitions  of 
quantities are employed. Tliis effect  is illustrated by the calculation of 
inductances using a magneto-static analysis. 
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5.10.6.1 Linear models Consider a simple iron core inductor drawn in 
Fig. 5.110. The aim is to compute the inductance of  this device to be used 
in an equivalent electric circuit. It is assumed that the core is loss-free 
without leakage flux  and the winding end-effects  are neglected. A two-
dunensional linear, electromagnetic analysis of  the device is applied. 

•ymmcUy nia 

winding icsitUncc 

inducLance II 

Fig. 5.110. Iron core inductor and equivalent electric circuit. 

Two definitions  of  the inductance can be found:  one based on the flux 
linked with the winding (5.339) and one based on the energy stored in the 
inductor: 

L=- (5.339) 

I  ¡H-dB 
L = 2-^  ^ 

dV 

r 
(5.340) 

with A'̂ the number of  turns, / the terminal current and Fthe volume of  the 
device. 

The flux  linkage with the winding in (5.339) can be determined 
from  the vector potential inside the winding area: 

(D=jBiiS (5.341) 

with S the surface  in which the flux  is penetrating. Based on the 
definition  of  the magneto static vector potential (B = V x A ), the flux  can 
be determined over the vector potential integrated along the length of  the 
winding dl: 

= . (5.342) 
I 

Equation (5.342) can be simplified  when considering a two-
dimensional Cartesian geometry, with no variation of  the field  and 
geometry in z-dhection: 
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N-<S>  = N.l.[A^-A,,)  (5.343) 
with I  the length of  the device in z-direction and A the average value of 
the vector potential at the right and left  side of  the winding. Due to the 
symmetry in the given device and the discretisation of  the winding cross 
section, it can be written: 

S M . 
= (5.344) 

Z A , 
with n the number of  elements over the cross section of  the winding and 
A iç the surface  of  element k.  In the general case (no symmetry), ti^e flux 
linkage can be extracted from  the FEM solution via an integratiorl over 
the winding cross sections by applying: 

¡AJdn 
= p (5.345) 

with J  the current density in the fractional  winding cross section dQ, 
with f2  the surface  of  the winding cross section (including both sides of 
the winding). This last equation automatically accounts for  the number of 
turns and the orientation of  the different  sides of  one winding, as the sign 
of  both the vector potential and the current density are related. The value 
for  the inductance can be calculated from: 

£ = Z = = . (5.346) 

When comparmg this equation with the magneto static energy 
functional,  it can be recognised as the term for  the linear energy, i.e. the 
energy supplied from  the source: 

dQ . (5.347) 

A sinusoidal variation of  the source current will also result in a 
sinusoidal change of  this energy; the system is Imear. 

In a linear analysis (v, = const.), the calculation of  the inductance 
via the stored magnetic energy in the model, (5.340) gives the same 
result. The stored magnetic energy per unit volume can be represented as 
the surface  above the material characteristics (Fig. 5.111). 

The amount of  the stored energy per unit volume is thus 
geometrically: 

W  . (5.348) 
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A sinusoidal variation of  the source current yields a sinusoidal 
variation of  the stored energy. Hence, the calculation of  the inductances 
based on flux  linkage and stored magnetic energy in the model give equal 
results. 

Fig. 5.111. Representation of  the stored energy in the model at a defmed 
operating point. 

This "linear" definition  of  an mductivity is equivalent to a 
measurement by a ballistic fiux  meter. 

5.10.6.2 Non-linear models For the computation of  the inductance 
based on the flux  linkage, (5.346) can be applied without changes. 
However, this value differs  from  the value of  the stored energy computed 
by (5.340). The material is non-lmear (Fig. 5.112). A sinusoidal current 
excitation does not yield a smusoidal change of  the stored magnetic 
energy due to the saturation effect.  Using eq.(5.349) is not appropriate for 
this sinusoidal operation because it does not consider the effect  of  higher 
harmonics. Signals modulated at non-linear characteristic do contain 
higher harmonics. Ferromagnetic saturation usually generates harmonics 
of  threefold  fundamental  frequency. 

dV (5.349) 

Fig. 5.112. Stored energy (5.349) in a non-linear model at a defmed  operating 
point. 

The calculation of  the stored energy is equivalent to an impedance 
measurement, which includes the measurement of  the terminal voltages 
and currents. If  sinusoidal current is applied, there will be odd harmonics 
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in the voltage waveform,  which cannot be determined by a magneto static 
analysis. 

5.10.6.3 Example: Inductor for  a fluorescent  lamp To illustrate the 
problem, consider a ballast inductor from  a circuit of  a fluorescent  lamp 
(Fig. 5.113). The inductor is about seven times longer than it is wide. It 
can be treated as a two-dimensional Cartesian problem neglecting end-
effects. 

Fig. 5.113. Half  symmetry of  the inductor. 

The design goal for  the mductor is twofold:  stabilise the current 
during the heating phase for  the electrodes of  the lamp and provide a 
defmed  over-voltage when the starter opens in order to ignite the 
fluorescent  lamp. 

230V~ 

Fig. 5.114. Circuit of  a fluorescent  lamp and shape of  the inductor. 

The results of  the inductance computation (Fig. 5.115) using both 
defmitions  clearly indicate the difference  that occurs for  the saturated 
operation points of  the device. This difference  is useful  in this case as it 
allows determination of  the linear operation range of  the device. 
However, the value of  the inductance should be determined based on the 
flux  linkage. 
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Fig, 5.115. Two-dimensional flux  plot and the computed energy. 
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The term "coupled problem" is used in many numerical approaches and 
applications. Various coupling mechanisms in a different  context, such as 
field  problems with electrical circuits, methods in a geometrical or 
physical sense, couplings in time and/or coupled methods to solve a field 
problem, are meant with this term. For a proper classification  of  these 
problems and related solution methods a systematic definition  is 
proposed. It can be used in the evaluation and comparison of  solution 
methods for  various problems. 

A coupled system or formulation  is defined  on multiple domains, 
possibly coinciding, involving dependent variables that cannot be 
eliminated on the equation level (Zienkiewicz In the literature, this 
notion is often  linked to a distmguishing context of  various physical 
phenomena or methods, without further  specification.  This paper 
proposes a classification  scheme in which the numerical models meeting 
the proposed defmitions  can be put. This may lead to the definition  of  a 
series of  test problems for  specified  coupled problems and solution 
algorithms. A classification  scheme can simplify  the comparison of  the 
various examples and approaches out of  the literature that solve such 
coupled problems. 

Next to "coupled problems" the terms "weak-" or "strong-coupled" 
will be discussed to propose a more homogenous terminology. 

6.1 Coupled fields 

To start with a definition  of  standards or a classification  of  technical 
physical problems, the properties and the interdependencies of  such 
phenomena must be considered and discussed. 

A general and simplified  structure of  considered field  problems is 
drawn in Fig. 6.1. Here, the link between the single fields  is determined 
by material properties depending on the corresponding field  quantities. If 
the field  blocks represent numerical methods to solve the single problem 
in two dimensions, further  couplings to external equations such as 
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electrical circuits, magnetic or thermal equivalent circuit models are 
possible to complete the scheme. 

The Imk between the drawn blocks is, in the context of  coupled 
problems and its numerical solution, a computer model or method. The 
following  question is in which way the physical phenomena have to be 
considered in an overall solution. From the idea of  how to link the effects 
numerically, a classification  of  the methods in this sense can be 
performed. 

The coupling of  magnetic field  equations, described by a partial 
differential  equation (PDE) and the electrical circuit equations providing 
algebraic expressions for  the electrical current densities, can be 
considered as a special type of  coupled problem. 

djiTeraiLial equBlion 
ofmaLion 

Fig. 6.1. Simplified  structure of  coupled fields. 

In general, more than one independent physical field  variable is 
involved. The field  variables for  stationary problems are present in a set 
of  PDEs, or in the transient case in ordinary differential  equations (ODE). 
The coupling is often  non-linear and this resuhs m a complicated 
numerical solution process. 

Fields can be described by differential  equations. A general form  of 
a differential  equation has to be studied to understand the parameter 
coupling between equations. Equation (6.1) represents the general form 
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of  a differential  equation with its possible coefficients  in the particular 
terms. In coupled fields  problems, such coefficients  are field  dependent 
and represent the Unk between the various field  types, such as 
magnetic/thermal etc. 

a^f  - V (AV/) =g (6.1) 
dt 

S. source 
4. absoiplion 

3. convection 
2. diffiision 

I. parabolic, transient term 

The first  term characterises the equation being parabolic. Stationary 
equations do not contain this term ( •= o ). In Laplace's equation terms 2 
and 5 are present. To obtain the Helmholtz equation, term 4 can be 
added. For these two types of  equations, a variational formulation  exists. 
The 3"* term is typical for  problems considermg motion effects, 
eq.(5.284). 

The coefficients  m (6,1) are usually derived from  given material 
characteristics. For example, temperature dependent material properties 
of  permanent magnet material can be used to define  a coupled 
magnetic/thermal field  problem. Within a field  problem definition,  the 
characteristics vary locally. 

6.2 Strong and weak coupling 

In general, it is possible to distmguish between the coupled problem in 
two ways, in its physical or its numerical nature. Very often  a coupled 
problem is called either 

• strong, or 
• weak. 

In the physical sense, the strong coupling describes effects  that are 
physically strongly coupled and the phenomena can not numerically be 
treated separately. If  numerical formulations  exist, the coupling can be 
found  in the governing differential  equations due to the coupling terms. 
The weak coupling describes a problem where the effects  can be 
separated. The problem with this definition  is obvious: If  coupled 
problems are studied, it is not very well known how strong or weak they 
are physically coupled; this is the desired answer expected from  the 
analysis of  the overall problem. For example if  the material property 
describing parameters are non-linearly dependent on the field  quantities, 
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the coupling, (strong/weak) can even change with varying field  quantities 
and the field  quantities are the result of  the analysis. Therefore,  the 
definition  of  strong/weak coupling should be chosen according to the 
numerical aspects instead of  their physical nature. Choosing for  the 
numerical aspects, it is possible to have a combined strong/weak coupling 
of  field  problems. This means that the strategy of  coupling can vary, and 
thus the methods/models, while solving the problem. 

Numerical strong coupling is the fiill  coupling of  the problem 
describing equations on matrix level. The equations of  all involved and 
modelled effects  are solved simultaneously. This implies that the 
coupling terms are entries in the coefficient  matrix as well. 

The numerical weak coupled problem is understood as a cascade 
algorithm, where the considered field  problems are solved in successive 
steps and the coupling is performed  by up-dating and transferring  the 
field  dependent parameters to the other field  definition  before  solving 
again. \ 

Since the problems cannot be distinguished by means of  elimination, 
a bi-directional influence  exists. The sensitivity of  a sub-problem to 
changes of  the variables of  the studied problem can differ  strongly. It is 
difficult  to quantify  a threshold for  separation of  both groups, and 
therefore  the separation may be considered as somewhat subjective. In 
this respect, the time constants of  the sub-problems play an important 
role. Usually the thermal and mechanical time constants are several 
orders larger than the electromagnetic time constants. So, on a short 
term, the problem with a larger time constant can be considered as weak 
coupled. But this is not true if  the stationary solution is of  interest. 

6.2.1 FEM coupling of  two fields 
In this section the strong coupling FEM equation system of  a 
magnetic/thermal problem is derived. For simplicity it is assumed that 
both field  problems are defined  on the same mesh. For a more realistic 
coupling, projection methods can be applied to enable the field 
definitions  on different  meshes. This approach results in additional 
coupling terms in the final  coefficient  matrix. For fiirther  simplicity, the 
material's properties v and k are assumed to be uidependent of  A and T 
respectively. The coupling of  the fields  causes the remaining non-
linearity by the loss mechanism. 

The magnetic/thermal coupled problem is modelled by a set of  two 
equations: 

oV^A-j<o-<TA  = -J, 
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It is assumed that the source term of  the thermal equation consists only of 
joule losses: 

(6.3) 

The first  term will appear on the right-hand side of  the system. The 
second term, the eddy current losses, have to be linearised and represent 
the coupling term witii a non-linear coefficient: 

dA 
A = pJl+  {2CTO)'A)A  = pJl  + m{A)A  (6.4) 

Written in matrix/vector notation eq.(6.4) is rewritten as: 
'uV'-ja  ar 0 " 

m jtV 
'A' 1 
T T = 0 (6.5) 

There is a coupling present through the coefficients,  although there is a 
zero entry in the off-diagonal  of  the magnetic equation. Applying the 
Galerkin approach resuhs in an integral per element of  the form: 

N, m 
0 

JtV' 

-1 
X " "4" 

T 
T '0 X " "4" 

+ A 0 dn  = 

J J . . 
0 

(6.6) 
For two-dimensional first  order elements this yields six algebraic 
equations: 

0 A 
M  K^ T, Fr 

' * * * 0 0 0 A © 0 
* * * 0 0 0 A © 0 
H< * * 0 0 0 A © 0 

+ + + * * « T, "T 0 
+ -1- + * * * 0 
+ + + * * * T, 0 

(6.7) 

The first  three equations are complex, the last three real. The entries 
marked with an • are the same terms that would be found  in the de-
coupled problem. The terms marked with a + result from  the eddy current 
heat source term. 

6.2.1.1 Non-linear iteration A method of  handling the remaining non-
linearity, is the Piccard iteration or successive substitution. The block 
iteration scheme can be given by: 

step 1 solve the magnetic equation (with lelaxation) 

step2 calculate the heat source teims 
Ar={K:y-F:; 
M'A^*' or M'A^ 
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step3 solve the themial equation (with relaxation) _ ^ , ^^ _ 

stcp4 check convergence 

Every loop involves the solution of  two systems of  equations in 
successive steps. For the calculation of  the heat sources, the magnetic 
solution from  step I can be employed (Gauss-Seidel-Hke algorithm) or the 
magnetic solution of  the previous loop (a slower Jacobi-like algorithm). 
The relaxation of  the iterations proves very important. An adaptive 
relaxation parameter can reduce the number of  iterations significantly.  A 
faster  convergence can be expected applying Newton iterations. 

6.3 Coupled problems 

The overall term coupled problems considers the coupled fields  and m 
addition includes the coupling of  methods as well. The link between 
different  methods, hybrid methods, to solve a field  problem, for  example 
using the combination of  finite  element and boundary element method, is 
understood as a coupled problem. 

rotor-bais 
stator end-winding 

Fig. 6.2. Material mesh of  end-ring and bar-ends and coil meshes of  the stator 
end-winding of  an induction machine. 

Or the classical analytical machine theory delivers models that can 
be combined with a numerical technique in order to form  an overall 
coupled model of  higher accuracy. For example the computation of  end-
winding effects,  using a three-dimensional FEM model, to extract the 
parameters for  an equivalent circuit model, can be seen as an approach of 
coupled models as well (Fig. 6.2). With respect to computational efforts, 
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for  example for  dynamic simulations of  motor models or observer models 
for  the machine control, the coupling of  those methods is advantageous to 
obtain an accurate but simple overall model of  the machine. 

Observing problems in the transient modelling of  relative motion of 
machine parts such as in a rotating motor, a possible solution of  this 
modelling problem can be a coupling of  geometries by element types 
with special properties. Overlapping shape functions  can be used to join 
different  meshes of  a FEM model and this can be understood as a coupled 
problem. 

A further  example of  this type of  problem, the coupling of 
measurements with a numerical model, can be given. The basic idea in 
this type of  problem is to measure inaccessible parameters and to use 
them as input for  the numerical field  computation. Such parameters are 
mainly non-1 ¡nearly dependent on the field  quantities and their 
interdependency from  them is unknown. For example material data 
obtained by measurements are approximated by interpolating polynoms 
and can be used in this numerical format  for  the field  computations. 
Look-up tables with measured data samples are possible as well. 

6.4 Classification  of  coupled field  problems 

After  this first  more or less subjective judgement of  the various coupling 
mechanisms, in the following  discussion the coupled problems are 
distinguished with respect to physical and numerical aspects. The single 
involved types or mechanisms of  coupling the various fields  are 
described here as sub-problems with specific  properties. It will be 
concluded with a matrix systematic. The matrix entries distinguish 
between the problem, the model description, the coupling mechanism, a 
proposed iteration scheme and a proposed method for  solving the overall 
field  problem. 

6.4.1 Sub-problem extent: domain/interface 
The different  interacting physical phenomena described by the coupled 
problem are defined  on partially or totally overlapping domains. For 
example thermo-electromagnetic problems belong to this group. For the 
electromagnetic problem definition  the surrounding air has to be 
modelled. The same domain is considered in the thermal problem by 
special boundary conditions such as heat transfer  due to convection or 
radiation boundaries. By using the FEM, different  meshes for  each sub-
problem can be used. The interaction takes place through interface 
equations. The involved field  problems can be numerically strong, i.e. on 
matrix level, or weak coupled, computed in a cascade algorithm. 
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In a second class, the mteraction of  the fields  is described by 
interface  equations of  the sub-problems. A heat transfer  or cooling 
problem with different  models for  a heated object and the cooling fluid 
belongs to the second group. The group determined by overlapping 
domains is sometimes referred  to as "class I" and the interface  group as 
"class II". 

6.4.2 Sub-problem discretisation methods: homogenous/ hybrid 
It is sometimes advantageous to apply different  discretisation methods for 
the involved fields.  The methods used can be the FEM opposed to BEM 
or FEM methods with different  types of  elements to result in a hybrid 
method. Analytical models can be considered. The addition of  algebraic 
equations originating fi'om  equivalent circuit models is possible as well. 
For example, a two dimensional FEM model to compute the temperature 
distribution inside an electrical machine can be extended by an equivalent 
thermal circuit model to consider the heat transfer  in the axial machine 
direction. In this way, a quasi three-dimensional approach is obtained by 
the coupled methods. The combination of  different  FEM models With an 
additional analytical model is possible. External electric circuits lean be 
coupled to consider the voltage or current-driven energy source. \ 

6.4.3 Numerical iterative solution methods: full/cascade  algorithms 
Due to the nature of  the physical sub-problems and the chosen 
discretisation method, differing  numerical properties can be Imked to the 
equations descending fhim  the sub-problems. A variety of  numerical 
methods can be chosen to solve the single sub-problem. Most of  them can 
be regarded as block iterative schemes. It is possible to put all the sub-
systems in a smgle matrix, with off-diagonal  blocks mathematically 
describmg the (linearised) coupling. This can be considered as a 
numerically strong and thus fully  coupled approach. 

On the other hand, several blocks can be solved separately with a 
well-suited equation solver. Not considering a possible parallellisation, 
the solution of  the sub-problems is usually obtamed in successive steps in 
a "cascade" algorithm. The newly obtained part of  the solution can be 
used immediately in the next step of  the iterative process. Other suitable 
solution techniques are domain-decomposition (DD) algorithms. 

6.4.4 Classification  matrix 
The above remarks on the classification  of  coupled problems to build up 
a matrix systematic underline the difficulty  of  putting all the mechanisms 
with respect to their different  nature into a single systematic. The 
developed matrix shows couplings between entries in the horizontal as 
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well as in the vertical direction (Table 6.1). Bi-directional links to other 
entries are possible as well. 

The columns of  the matrix represent the mentioned differences  of 
the considered problems with its coupling mechanism. The rows of  the 
systematic represent the proposed types of  problem to put into the 
appropriate columns. 

With respect to the geometry, in the first  column the studied 
domains have different  properties, such as strong differmg  material 
characteristics. The numerical sub-problems are described by partial 
differential  equations (PDEs) and the coupling of  the systems of 
equations is defined  by its boundary conditions or interface  equations. 
Depending on the condition of  the single sub-problems, a full  coupling 
and weak coupling by cascade algorithms is proposed. For example a 
hybrid FEM/BEM can be used to solve the overall field  problem or in the 
case of  strong differences  in the condition of  the sub-problems domain 
decomposition (DD) algorithms, a weak coupling can be employed. Here, 
an ambivalence of  the overall problem can be noticed. Using a hybrid 
method can be considered as a coupled method and the DD as a weak 
coupling of  physical systems. 

The physical nature of  the field  sub-problems is considered in the 
second column. Examples of  this are coupled magnetic/thermal or other 
field  combinations. The fields  can be described either by PDEs or by a 
combination of  PDE and algebraic equations, if  equivalent circuit models 
are used for  one of  the sub-problems. The coupling is mainly performed 
by the exchange of  the material parameters and source terms or directly 
by the circuit equations; for  example if  external electric circuits are 
considered. For the solution, numerically strong and weak coupled 
iteration schemes can be applied. 

Hybrid methods are put Into the third column. The coupled 
phenomena have different  numerical properties. All possible coupled 
methods such as FEM, BEM, magnetic-, thermal-equivalent circuits as 
well as the classical analytical field  theory coupled to modem numerical 
techniques, are put to this matrix entry. The model description of  the 
overall problem can be done by coupling PDEs, circuit equations, 
analytical methods or other methods. 

The difference  of  behaviour in time of  the coupled effects  considers 
the last column of  the matrix. Here, all the transient problems can be 
found.  Simulations with respect to the differential  equation of  motion, an 
ordinary differential  equation (ODE) are put into this matrix entry. 
Various methods are suited to solve such in time-coupled problems. 
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7 Numerical optimisation 

The design process of  electromagnetic devices reflects  an optimisation 
procedm-e. The construction and step by step optimisation of  technical 
systems in practice is a trial and error-process. This design procedure 
may lead to sub-optimal solutions because its success and effort  strongly 
depends on the experience of  the design engineer (Fig. 7.1). 

individual parameters external parameters 
dHUrilln 
Imtvilnlie 
dHUrilln 
Imtvilnlie 

niubnitia 

Fig. 7.1. Parameters affecting  the design. 

To avoid such individual parameters and thus to achieve faster 
design cycles, it is desirable to simulate the physical behaviour of  the 
system by numerical methods. In order to get an automated optimal 
design, numerical optimisation is recommended to achieve a well defined 
optimum. 
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Optimisation of  electromagnetic devices turns out to be a task of 
increasing significance  in the field  of  electrical engineering. The term of 
Automated Optimal Design (AOD) describes a self-controlled  numerical 
process in fte  design of  technical products (Hameyer ). Recent 
developments in numerical algorithms and more powerful  computers 
offer  the opportunity to attack realistic problems of  technical importance 
(Pahner 

7.1 Electromagnetic optimisation problems 

The distinctive feature  of  this type of  optimisation problem is its 
complexity, which results from  a high number of  design parameters, a 
complicated dependence of  the quality on design parameters and various 
constraints. Often  the direct relation of  the desired quality of  the technical 
product on the objective variables is unknown. Stochastic optimisation 
methods in combination with general numerical field  conaputation 
techniques such as the finite  element method (FEM) offer  tlie^most 
universal approach in AOD. This section discusses methodology, 
characteristic features  and behaviour of  optimisation methods. 

To be able to select the appropriate optimisation algorithms to form 
an overall design tool together with the numerical field  computation, the 
properties of  typical electromagnetic optimisation problems will be 
discussed (Rao , Pahner Electromagnetic design and optimisation 
problems reflect  mainly the following  categories: 

• constrained 
• problem type: 

^ parameter- or static optimisation, /(x)-»- min. 
• trajectory, or dynamic problem, / (x,x) min. 

• non-linear objective function 
• design variables: 

ISlreal 
• mixed real/integer 

• muhi-objective function 
• interdependencies of  the quality function  and the design 

variables are unknown; no derivative information  available 
• the quality function  is disturbed by stochastic errors caused by 

the truncation errors of  the numerical field  computation method. 

In reality electromagnetic optimisation problems are constrained due to 
the various reasons mentioned in chapter 2.2. Nowadays optimisations 
are performed  mainly as static problems. Numerical optimisations require 
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huge amounts of  computation time. Therefore,  the optimisation as aimed 
at here, combined with the FEM, of  the dynamic system behaviour is not 
yet performed.  For transient problems an evaluation of  the quality 
fiinction  by numerical methods (FEM) is too time consuming. 
Considering mixed real/integer design variables results in long 
computation times as well. The tick boxes in the list that are not marked, 
represent developments for  the future.  The optimisation problems that 
can be solved will grow with increasing computer performance  as well. 

7.2 Optimisation problem definition 

In general, optimisation means to find  the best solution for  a problem 
under the consideration of  given constraints and it does not mean to select 
the best out of  a number of  given solutions. In other words the definition 
of  an optimum is: 

Define  a point Xo=(xu  X2,  .... with the independent  variables xi, 
X2,....  x„ in such a way that by their variation inside  the admissible  space 
the value of  a quality function  Z(x^  reaches a maximum or a minimum. 
The  point Xg  is described  as the optimum. 

This definition  in mathematical terms: 
Minimise a quality fiinction 
Z(x) = Z(jc„... X, ) -> min. 

considering 

/i/x)  = 0 j = \(\)p  . 
The gj are called inequality and the hj equality constraints. Any 

constraint can be determined in one of  these forms.  Constraints represent 
limitations on the behaviour or performance  of  the design and are called 
behaviour or functional  constraints, whereas physical limitations on the 
design variables (e.g. availability, manufacturability)  are known as 
geometric or side constraints. If  an optimisation problem with only 
inequality constraints g,{x)  < 0 (Fig. 7.2) is considered, all sets of  values x 
that satisfy  the equation g,{x)  = 0 form  a (JV-l)-dimensional hyper-surface 
of  the design surface,  the constraint surface.  The constraint surface  splits 
the design surface  into two basic regions: the feasible  or acceptable 
region with and the infeasible  or unacceptable region with 
g/x) > 0. If,  during the progress of  the optimisation, a design vector lies 
on a particular constraints surface,  this constraint is called an active 
constraint. 
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1 Teasible regiqn \ 

.••̂ ••li - • ^ • ' i ; 

Fig. 7.2. Constraint surfaces  in a hypothetical two-dimensional design space, 
with side constraints (gi and gi) and behaviour constraints (gj and gy). 

The independent variables are the design parameter or object 
variables. Fig. 7.3 shows the shape of  a two-dimensional quality function 
with the global optimum and difficulties  such as saddle points and' local 
extremum. 

global oplimum 
saddle 
local extretnum 

Z(x,.xî) 

Fig. 7.3. Quality function  with two object variables. 

To obtain commensurable criteria for  the generation of  the design 
variations and to support a simplified  formulation  of  the stopping criteria 
of  the algorithm, the design variables should be transferred  into a 
normalised form: 

(7.2) or 

where Xĵ d is the original parameter with its given physical dimension, Xjj 
the lower bound of  the parameter variation range, while Xj> denotes the 
actual parameter variation range. If  no lower or upper bound of  the 
parameter is given, the design variable can be normalised to its initial 
value xj,o-

The appropriate formulation  of  the quality function  represents a 
particular problem. All design aims must be formulated  in this single 
fimction  and all object variables must be implemented. Multiobjective 
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optimisation extends the optimisation theory by permitting multiple 
objectives to be optimised simultaneously. It is also known under 
different  names, such as Pareto optimisation, vector optimisation, 
efficient  optimisation, multicriteria optimisation, etc. One way of 
formulating  a single objective function  is a weighted linear combination 
of  the q different  objective functions: 

1>I 

where denotes a weighting factor  best formulated  with the properties 

r .eIR, 0 < / , < ! , ¿ r , = l (7.4) 
(-1 

and/{x) are the individual objective functions.  In practice, the choice of 
the weighting factors  may already influence  the result of  the optimisation. 
It is often  not straightforward  to select a single fixed  weighting factor  for 
each objective, especially if  the objective function  is erroneous or if  no 
particular preference  is given to one of  the objectives. 

7.3 Methods 

In general, numerical optimisation algorithms are iterative methods, 
constructed to reach the desired optimum in successive steps. This is 
performed  following  particular rules to vary the object variables and to 
determine the search direction. The various algorithms differ  only in the 
choice of  step-length, determination of  the search direction and in the 
choice of  a stopping criterion. A general form  of  an optimisation 
algorithm can be given by applying: 
step 0: Choose a start-vector  in the admissible  space and  set the 

counter of  iteration  k=L 
step 1: Evaluate  the solution-vector  according  to a quality function, 
step 2: Check  whether a stopping criterion is fulfilled.  If  yes, stop the 

optimisation; if  not, set k=k+]. 
step 3: Generate a new solution-vector  by variation of  the objective 

variables using a suitable step-length  and  search direction. 
Continue  with step 1. 

With the given properties of  the electromagnetic optimisation 
problems, the requirements of  the optimisation algorithms can be 
formulated.  Numerical methods have to be examined with regard to the 
following  criteria: 

• reliability 
• robustness 
• insensibility to stochastic disturbances 
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• application range 
• accuracy 
• stable solutions 
• performance. 
Optimisation algorithms can be classified  into: 
• deterministic or stochastic and 
• direct or indirect methods, 

Determmistic methods are basically local optimisation methods, 
often  based on the construction of  derivatives or approximations of  the 
derivative of  the objective function  (Fletcher Bertsekas Rao 
Such gradient based methods, e.g. Conjugate Gradient (CG), Nevrton, 
Quasi Newton, Broyden-Fletcher-Goldfarb-Shanno  (BFGS), etc. are very 
popular, as they are effective  and converge to the local optimum in a 
small number of  steps. This low number of  quality function  evaluations 
would be ideal when applying a computationally rather expensive FEM 
analysis to evaluate the objective function.  If  no analytical objective 
function  exists or the derivative is difficult  to obtain, the use of  these 
methods is not appropriate. Furthermore, these methods are very sensitive 
to stochastic disturbances, especially present in the derivative information 
they are based upon. Most deterministic methods additionally require the 
transformation  of  a constrained optimisation problem into an 
unconstrained one. In the case of  a muhimodal objective function,  as is 
often  the case in multiobjective optimisations, these methods are unable 
to find  the global minimum (optunum). 

An effective  approach to compute the sensitivity information  during 
a FE-analysis is introduced to field  computation by Park et al, the 
method of  adjoint variables. This method was previously successfully 
applied in electronic circuit optimisation (Director & Rohrer ^, 
Vandewalle et al. '"). Here, the sensitivity of  the objective function  with 
respect to a set of  design parameters can be computed with only two 
solutions. This basically requires the development of  a mesh generator 
and/or solver specialised for  a particular optimisation task (Dappen 
Ramirez & Freeman 

In general, the human interaction mvolved in formulating  an 
optimisation problem, in particular in finding  the derivatives, is a 
considerable economical factor  when evaluating the efficiency  of  any 
optimisation method. The preparation for  such an optimisation task might 
require weeks, while the execution of  the actual optimisation run is a 
matter of  minutes. Over the past years, research has been carried out for 
achieving automatic differentiation  of  computer codes. The idea is to 
provide first  and higher order derivatives of  coded vector functions, 
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without human interaction. A variety of  automatic differentiation 
software  is already available, such as ADIC  (Bischof  et al. ADOL-C 
(Coleman & Jonsson PCOMP  (Dobmann et al. etc. At present, 
software  code contained in a single file  with up to 10.000 lines of  code 
can be automatically differentiated. 

Stochastic optimisation methods, on the contrary, such as simulated 
annealing, evolution strategy and genetic algorithms, do not require 
derivative information.  Any kind of  design constraint can be 
implemented in a simple manner, by just rejecting a design that violates 
any constraint or by using penalty terms in combination with the 
objective function.  These methods are capable of  handling large 
dimensional optimisation problems and are less sensitive to stochastic 
disturbances of  the objective function  value (Kasper The major 
drawback of  these methods is the large number of  function  evaluations 
required when compared to deterministic methods. This fact  has, in a first 
view, an even greater impact when considering FEM based objective 
function  evaluations. The first  combinations of  the finite  element 
technique and stochastic optimisation methods considered partial models 
only (Preis & Ziegler Mohammad One of  the first  publications 
reporting the application of  a stochastic method to optimise an entire 
electrical machine is reported by H a m e y e r S i n c e then, a large variety 
of  optimisation problems have been solved using the combination of 
stochastic methods and finite  element function  evaluation (Palko 
Although the plain execution time of  such optimisations is large when 
compared to deterministic approaches, the simplified  set-up of  the 
optimisation task and their ability to find  the global optimum make such 
an overall optimisation procedure attractive. 

The rather high computational expense of  the FEM has always 
resulted in attempts to reduce the number of  function  evaluations by 
applying statistical methods to sample the search space efficiently.  A 
variety of  methods can be entitied as indirect, as the optimisation 
algorithms are executed on an approximation of  the real objective 
function.  The combmation of  the Response Surface  Methodology (RSM) 
and Design of  Experiments offers  a whole set of  statistical tools not only 
to optimise a design, but also to evaluate the main and interactive effects 
of  the design parameters (Box & Draper Only a few  applications of 
this method have been reported in electromagnetics in conjunction with 
FEM fimction  evaluations (e.g. Brandiski et al. A major drawback 
of  these methods is the fact  that due to the use of  first  or second order 
(global) polynomials, there is only a remote possibility of  finding  the 
global optimum in a search space with several local optima. This problem 
has recentiy been relaxed by the application of  radial basis functions  for 
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the approximation of  objective functions.  The first  applications, 
employing the so-called General Response Surface  Method (GRSM) 
have been introduced to the electromagnetics community by Alotto et 
al. The experience has shown, however, that these methods are 
applicable to rather low dimensional problems only, as their practical 
efficiency  deteriorates with a high number of  design variables. Other 
methods utilise the derivative information  made available by the 
approximation based on radial basis functions,  as reported in Suykens & 
Vandewalle These methods increase the probability of  fmding  the 
global optimum present in the approximation. 

To be able to choose the appropriate algorithm, in this section 
various methods will be discussed. Based upon the most likely 
classification  of  the electromagnetic optimisation problems discussed in 
the previous chapter, a pre-selection of  optimisation algorithms has been 
derived. Direct search algorithms are selected. No algorithm requires 
derivative information  of  the objective function. 

7.3.1 Non-stochastic direct search algorithms 
In non-stochastic direct search algorithms, the search direction (parameter 
variation) and step lengths are fixed  by a predefined  scheme rather than 
in an optimal way. The advantage is that only the value of  the objective 
function  has to be available. No derivative information  is required, nor 
does it need to be constructed from  possibly erroneous objective function 
values. 

7.3.1.1 Strategy of  Hooke and Jeeves The strategy of  Hooke and Jeeves 
(Schwefel""')  is a direct pattern search method. This unconstrained 
optimisation method is characterised by a sequence of  two kinds of 
moves: 

• First, an exploratory move in each iteration, consisting of  a 
sequence of  single discrete steps per design variable (co-ordinate 
du-ection) 

• This is followed  by a pattern move, being an extrapolation 
towards an assumed favourable  search direction (defined  along 
the line firom  the initial design in the iteration and the best design 
encountered by the exploratory moves). An exact description of 
the extrapolation can be found  in Schwefel 

Such an extrapolation does not necessarily lead to an improvement 
of  the design. It is merely a guess, based on the pattern of  the previously 
successful  moves. This extrapolation determines the name: pattern 
search. The success of  this last move is tested only after  the following 
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exploratory move. The parameter variation step length S,  of  the 
exploratory moves is decreased in each iteration by the multiplication 
with a step length adjustment factor  a (0 < a< I). Due to this sequential 
structure, a parallel implementation is impossible. The Hooke and Jeeves 
algorithm is characterised by the following  properties: 

• derivative free,  unconstrained optimisation method 
• dependency of  the global convergence on the choice of  the 

starting step length Si  and step length factor  a. 

The value of  the objective function  is required only for  detecting the 
best exploratory move per iteration. A constrained optimisation task 
might be transformed  into an unconstrained optimisation. This is not 
always possible. If  only side constraints are defined  in the optimisation 
task, such a problem can be transformed  in a "quasi-unconstrained" 
optimisation problem. This is achieved by setting the objective function 
to a very high value in case of  violation of  the constraints. This infeasible 
design does not need to be evaluated. This should not be confused  with 
the penalty method. In the penalty method, a violation-dependent value 
(determined by a function)  is applied after  the design has been evaluated. 
If  the violation of  the constraints leads to a design that cannot be 
evaluated (e.g. invalid geometry), the application of  the penalty method is 
prohibited. 

The Hooke and Jeeves algorithm is favoured  compared to 
supposedly better algorithms such as Rosenbrock's algorithms 
(Schwefel  and the Nelder and Mead Simplex method, due to the 
following  reasons: 

• Nelder and Mead's Simplex method (an unconstrained method as 
well) requires the ranking of  the evaluated designs in the n-
dunensional simplex following  their objective function  value. 
This ranking decides on the new search direction. The "quasi-
unconstrained" mode described above must fail,  as all infeasible 
designs are equally valued. 

• Rosenbrock's algorithm may include inequality constraints. 
However, the approach of  the constraint must already be 
detected, not always being possible, especially in the case of  non-
linear constraints. 

7.3.1.2 A theoretical optimisation example To illustrate the 
convergence of  the selected optimisation methods, and also to allow a 
comparison of  the different  algorithms, a two-dimensional optimisation 
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problem is chosen as described in Dappen and Alotto et al. This 
particular optimisation problem is defmed  by: 

minimlze/(x) = J(-0.01((jc, + 0.5)^ -30^; -20jc,)) (7.5) 
i-i 

subject to the constraints: 
/ = 1,2 . (7.6) 

This function  is chosen as an example as its objective function  can 
be visualised (Fig. 7.4) including the search paths of  the different 
algorithms. There are four  local minima of  approximately equal value. 
The global minimum is located at (-4.454,-4.454). Such an objective 
function  resembles to a large extent typical objective functions  found  in 
engineering applications. The starting point of  the visually presented 
optimisations are always (0,0). This point is located on the slope towards 
the local optimum 03 (Fig. 7.4). Any gradient-based method would 
converge to 03. However, the stochastic algorithms are restarted from 
different  starting points. 

0 
B l o b a l m i n i m i i i i i . H x ) - - 5 . 2 3 2 7 6 

Fig. 7.4. Visualisation of  the objective function  surface  of  the optimisation 
problem defined  in (7.5), (7.6) with the optimal solution at 

X),bc«=X2,b«.=-4.45377. 

Fig. 7.5 illustrates a successful  optimisation run. The initial step size 
is 6.0 and the step length factor  a=0.5. The path connects the best trials 
per iteration. 

Fig. 7,6 illustrates the problem with the Hooke and Jeeves 
algorithm: there is no guarantee for  global convergence, as it entirely 
depends on a "good" choice of  the strategy parameters and the starting 
point. 
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Fig. 7.5. Path of  a successfiil  (global convergent) optimisation using the Hooke 
and Jeeves algorithm and convergence of  the error (xo(0,0), 5o = 6.0, a = 0.5). 

Fig. 7.6. Influence  of  the choice of  the initial step length to fmd  the global 
optimum. Start at Xo(2,0), 8o = 6, a = 0.5 (local optimum 02), and a = 0.85 

(global optimum Ol). 

7.3.2 Stochastic direct search algorithms 
Stochastic search algorithms have steadily gained interest over the past 
years due to the increase in the computing power available. Various 
algorithms have already been developed and applied to a wide variety of 
problems in different  fields  of  science, technology and economics. 
Simulated annealing serves mainly as a basis for  comparison, while the 
two evolution strategy algorithms are valuable optimisers in combination 
with finite  element function  evaluations. 

7.3.2.1 Simulated annealing The technical process of  annealing solids 
inspires simulated annealing algorithms. A slow and controlled cooling of 
a heated solid ensures proper solidification  (highly ordered crystalline 
structure), the state of  the minimal internal energy. Rapid cooling causes 
defects;  the system is not in a state of  a thermal equilibrium (Rao "''). In 
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terms of  the optimisation theory, a sequence of  steps can be formulated, 
defining  a minimisation process by random changes of  the design 
variables and a probability acceptance criterion for  them. An evaluated 
design vector is accepted or rejected following  the Metropolis criterion 
(Metropolis et al. 

• accept design if  /(x,^,) - / (x , ) < 0 and set x,+i=x, 
• otherwise accept with the probabilily 

with the scaling factor  kt,  called the Boltzmann constant and T  the 
temperature. Algorithms applying the above probability distribution are 
called Bohzmann annealing algorithms. It has been proven (Geman &, 
Geman that such algorithms are guaranteed to find  the global optimum 
if  the reduction of  the temperature is taken to be not faster  than: 

with Tt the temperature at iteration k. Applymg such a logarithmic 
cooling schedule results in practice in an infmite  lasting optimisation 
process. Therefore,  other cooling schedules are chosen, the majority 
being based on experimental studies for  selected types of  problems, rather 
than being mathematically derived (Ingber Hajek ^ ). These faster 
schedules are sometimes called simulated quenching to express the fact 
that they do not satisfy  the sufficiency  condition (7.7) to converge to the 
global minimum. However, they are usually a good trade-off  between a 
fast  convergence and high global convergence probability. The most 
common temperature schedule is a simulated quenching algorithm with 
the exponential cooling schedule: 

0 < c < l . (7.8) 
However, the optimal choice of  the annealing factor  c is not obvious 

and depends on the problem type. Typical values vary between 0.98 -
0.80, with decreasing probability of  finding  a global optimum in non-
convex feasible  spaces. 

The simulated annealing starts at a high initial temperature TQ. It 
follows  the evaluation of  a sequence of  design vectors, either purely 
randomly generated or following  a scheme, as for  instance the evolution 
strategy. This is continued until equilibrium is reached: the average value 
of/converges  towards a stable value (e.g. by means of  an error bound on 
the standard deviation of  y) as i increases. During such a period of 
constant temperature, a step length vector 5 is adjusted periodically. The 
best design vector is stored. If  equilibrium is reached, the temperature is 
lowered and the above sequence is repeated starting from  the active 
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optimal point. This process is stopped if  a sufficiently  low temperature is 
reached and no further  improvement of  the objective function  can be 
expected. 

Except for  the definition  of  the scaling factor  k  and the scheme to 
lower the temperature, also the formulation  of  the probability to accept or 
reject the evaluated designs have undergone investigations in the past few 
years in order to accelerate the algorithm by 'maintaining the property of 
global convergence. Codes such as Adaptive Simulated Annealing must 
be named here (Ingber From the viewpoint here, however, it must be 
stated that these improvements of  the global convergence are of  a 
theoretical nature and have a significant  effect  only on very large 
dimensional optimisation problems (100 and more design variables). 
Therefore,  the simulated quenching methods are preferred  here. 

The advantages of  simulated annealing are: 
• simple implementation 
• slow cooling guarantees high probability of  global convergence, 
• possibility of  solving mixed integer, discrete or continuous 

problems 
• insensitive to stochastic disturbances of  the objective function 
• simple combination with other direct search algorithms. 

The disadvantages are: 
• no optimal scheme to determine a sufficiently  high To without 

knowledge of  the feasible  region 
• high number of  function  evaluations. 

The implemented version of  the simulated annealing algorithm tries 
to tackle one of  the disadvantages. By adjusting the step length vector 5 
of  the parameter variation automatically in such a way that approximately 
50% of  all designs will be accepted during one temperature step, the first 
disadvantage is relaxed. During each temperature step, a number of  j 
step-length adjustment cycles are performed.  Each cycle with constant 
step length consists of  iV-design variations, changing one design 
parameter i at a time. A new design is generated by applying a random 
change (based on the step length vector 5) to the previously accepted 
design vector Xp^: 

O C . ; 1 ) - 1 ) (7.9) 
with z(0,l) a uniformly  distributed random number of  the interval [0,1]. 
The adjustment of  the step length vector per parameter i in (7.9) is based 
on the design acceptance ratio r per cycle: 
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(7.10) 
"qdc 

with /Jaceeptedj the number of  accepted designs based on changes of 
variable i and fiq̂ ie  the predefined  number of  cycles. The step length 6( is 
adjusted after  each cycle to: 

1 ir-0.6)\ 

S.= 
0.4 

1 + a 
0.4 

[fr,  > 0.6 

ifr,  <0.4 (7.11) 

with a the step length factor,  usually equal to 2.0. 
To illustrate the performance  of  the implemented simulated 

annealing algorithm, the optimisation problem (7.5), (7.6) is solved. The 
strategy parameters of  the SA are chosen as: step length factor  a=2.0, 
c=0.85, two iterations with two step length adjustment cycles before 
temperature reduction (2*2*N  trials per temperature step). The 
optimisation is terminated if  the difference  of  the best function  value of 
the present temperature step to the best overall value is less then 5.0e-4, 
and this is true for  two successive temperature steps. A typical 
optimisation histoiy is shown in Fig. 7.7. The optimisation was repeated 
thhty times, and the algorithm always converged to the global minimum 
in 01 requiring typically 600-850 function  evaluations. 

100 200 300 400 soo 600 roo 
nisibtf  ofhnElBD  cviloidlcu 

Fig. 7.7. Path of  the connected best trials per temperature step. The path 
illustrates one strength of  the algorithm, as it is able to escape from  the local 

optimum 02 that is reached first. 

A parallel implementation of  SA is possible, but not attempted here, 
as the implemented SA mainly serves as a comparison tool. Furthermore, 
a simple parallelisation of  the above implementation of  the algorithm is 
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not likely to be efficient,  as reported in (Ingber A better efficiency  is 
reported for  clustered algorithms, where an annealing is performed  at 
different  temperatures per computational node. 

7.3.2.2 Self-adaptive  evolution strategy Evolution strategies imitate in 
a simplified  way biological mutation and selection. Evolution strategies 
slowly started to become popular with the work of  Rechenberg and 
Schwefel  Especially during the past decade, accelerated by the rapid 
increase of  the available computer power, a vast number of  developments 
have been reported (Bäck et al. ). In contrast to genetic algorithms, 
evolution strategies are directly based on real valued vectors when 
dealing with continuous parameter optimisation problems. While 
Rechenberg " developed a theoiy for  the simple two member (single 
recombmant) evolution scheme, the theoretic framework  of  multimember 
multirecombinant (also called multiparent) evolution strategies, including 
self-adaptation,  is still weak. Bäck, Hammel and Schwefel  comment on 
this in Bäck et al. ^ "We know that they work, but we do not know why". 
However, first  attempts have been made (Beyer Even though in 
these publications the superior progress rate of  multirecombinant 
evolution strategies is highlighted, the single recombmant schemes are 
still present in engineering research. This is mainly due to their simple 
implementation, but they are certainly no longer justified  when seeking a 
high performance  algorithm. 

The implemented evolution strategy is basically the 
multirecombinant scheme developed in (Schwefel  ""*), slightly adapted in 
(Hameyer An evolution scheme is based on a population of  designs of 
size A. The members of  this population are created by recombination and 
mutation fi'om  a set of  the / j parent design vectors xjf'.  These parent 
design vectors are selected following  their fitness  from  the A offsprings  of 
the previous iteration. Instead of  randomly selecting only one of  these 
parents to generate one offspring,  multirecombinant schemes are based 
on the contribution of  p parent vectors. The factor  p is therefore  termed 
the sexuality. Our experiments and recent publications (Beyer ") have 
indicated that a sexuality p= //promises the highest progress rate of  the 
algorithm. Mutation is independently applied to each design vector 
element as: 

with i = l(l)N  (7.12) 
with k  the generation index, p the parent index, m denoting a population 
member index of  the interval [\,Ä] and j/*^the random search direction. 
The parental designs can be selected either from  the present population 
only (/y/i;,A-"comma"-strategy) or from  the population and the previous 
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parent set {p';ii-;i-"plus"-strategy). While in the comma strategies, 
individual parameter sets are mortal (existmg only for  one generation), 
they may survive for  the whole optimisation in a plus strategy. Plus 
strategies are more likely to get trapped in local optima. On the other 
hand, they feature  a higher progress rate (Beyer Using an intermediate 
recombination scheme, the step length for  each population member 
is constructed on the basis of  p step lengths of  the p. parents. As indicated 
above, it is advisable to choose 

(7.13) 

with r / l , / / ) a uniform  distributed random integer from  the interval 
being newly generated for  each j . 

Furthermore, instead of  constructing an individual step length for 
each design parameter, only one step length is used for  the whole set. 
This requires a normalisation of  the parameter. Tests have shown that this 
single step length speeds up the algorithm, provided there are no strong 
dependencies among the object parameters. It must be noted, that (7.13) 
actually defines  this evolution scheme to be self-adaptive  of  OS4-type 
(ctSA stands for  a-self  adaptive, with <s the mutation strength) as defined 
in Beyer'^. In self  adaptive schemes, the mutation strength eras a strategy 
parameter is individually coupled with each set of  object parameters. 
Thus the individual step length is stored with the object parameters. To 
evolve through the course of  the optimisation, an additional learning 
parameter is specified.  It determines how quickly and accurately the self 
adaptation is performed.  Beyer'^ reports this self  adaptive scheme to 
achieve optimal convergence velocity for  (l,X)-strategies if  the mutation 
strength is mutated following  either a lognormal distribution or a 
symmetrical two-point distribution. Here, the intermediate step length 
(mutation strength) is adjusted following  a two-point distribution: 

{5L*j/a " «(0,1] £1/2 

with m(0,1] sampling from  the random uniform  (0,1] distribution and a 
the step length adjustment factor.  The optimal adjustment factor  a is 
problem dependent, usually chosen between 1 and 1.7 with 1.2-1.3 being 
a good choice for  problematic multiminima problems. The adjustment by 
(7.14) helps in exploring the feasible  space in two distinct directions: 
locally by narrowing the search space for  approximately 50% of  the 
offsprings  and globally by widening it for  the remaining sets. Hameyer 
supports the latter by enforcing  the final  step length to follow  the 



www.manaraa.com

Maxwell distribution. This makes larger step lengths more likely than 
smaller ones, and should avoid trapping in local optima. 

As already indicated above, the choice of  the strategy parameters is 
problem dependent. Based on a large number of  tests, involving 
numerous technical optunisation problems, a possible choice of  the 
strategy parameters is collected in Fig. 7.8. It should be clear, however, 
that these are empirical data and not necessa'rily the optimal choice for  a 
particular optimisation problem, nor do they indicate the bounding lines 
any limits. The choice of  the number of  parents depending on the 
population size for  optimal progress is supported by the data given in 
Beyer". 
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Fig. 7.8. Typical choice of  the strategy parameters for  the muhirecombinant 
evolution strategy (population size Z related to the dimensionality of  the 

optimisation problem N,  and number of  parents related to population size). These 
empirical data are valid only for  typical technical problems, featuring  locally 

smooth, non-convex feasible  spaces. 

Selecting the strategy parameter according to Fig. 7.8 must be 
accompanied by an appropriate initial step length. The initial step length 
should be chosen to be larger than the Euclidean distance of  the object 
parameter space. If  the design parameters are normalised to the interval 
[0,1], this is-*^. If  one assumes a well-conditioned optimisation problem, 
where small changes to the object parameters cause small changes in the 
value of  the objective function,  then the change of  the step length can be 
taken as a stoppmg criterion. 

To illustrate the global convergence of  the self-adaptive  evolution 
scheme, a sequence of  optimisations with different  strategies (30 runs 
each) are performed  on the optimisation problem (7.5),(7.6). While the 
(2/2,8)-strategy globally converges in only 37% of  the tests, a (4/4,15)-
strategy does so in 95% of  the runs. For this theoretical model, the step 
length adjustment factor  a is 1.6. 
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Fig. 7.9. Convergence histoiy (best offepring  per iteration) for  a successful  run 
with (2/2+8)-strategy. 
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Fig. 7.10. Convergence history of  a successful  but slow test with a (2/2+8) 
strategy. The algorithm is trapped in a local optimum (04) for  a considerable 

number of  iterations. 
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Fig. 7.11. Convergence histoiy of  a successful  test with a (2/2,8)-strategy. This 
strategy globally converges in only 37% of  the test nms. 
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Fig. 7.12. Convergence histoiy of  a test with a (4/4,15)-strategy. This strategy 

globally converged in 97% of  the test runs. 

The evolution strategies are well suited for  parallel implementation, 
as all individuals in the population can be constructed and evaluated 
independently. One important property of  the evolution strategy must be 
pointed out, as it forms  the base of  a sequencing of  these algorithms with 
other algorithms: the evolution strategies converge very fast  during the 
initial steps of  an optimisation but they are poor in fine  tuning the 
parameter set. Such an algorithm is well suited for  finding  the most 
interesting region of  the feasible  space at first,  being followed  by a faster 
local algorithm to fine-tune  the parameter set. 

7.3.2.3 Differential  evolution Differential  evolution (DE) (Stom & 
Price is a rather recent approach for  the treatment of  real-valued 
multiobjective optimisation problems. As is typical for  stochastic search 
algorhhms, differential  evolution does not require any prior knowledge of 
the variable space, nor of  the derivatives of  the objective fiinctions 
towards the design variables. The algorhhm is very simple, requiring only 
two control parameters, and is inherently parallel. Differential  evolution 
is a self-adaptive  evolution scheme clearly deviating from  the CTSA 
scheme outlined in the previous section. 

Consider a .?V-dhnensional vector of  design variables x: 
x = . (7.15) 
In the initial step, a population of  size X of  randomly chosen designs 

Xi is constructed such that the initial population covers the entire 
parameter space uniformly.  Practically, this could be achieved by 
defining  an initial step length of  design variations So, being applied 
randomly to a given start design XQ: 

+ (7.16) 
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with m=l(l)X, i=l(l)A^and the randomly chosen s, e[o,l]. In the process 

of  the optimisation, DE generates new parameter vectors by adding the 
weighted difference  between a defined  nmnber of  randomly selected 
members of  the previous population to another member. In its basic 
strategy, this is the difference  of  two vectors added to a third; 

v r = x : r + a - ( 4 ' - x i V ) , (7.1?) 
for  m = 1(1)A, with k  the generation index, r,,ri,rj g [l,>i.], randomly 
chosen and mutually different  and aeIR,a>0.  The difference  term 
(xjj ' -xi7)is obviously similar to the step length 5 in the previously 
described aSA scheme, as well as a finds  its equivalence as the 
adjustment (or learning) factor.  The difference  is that this step length is 
not taken from  a fitness-selected  set of  individuals, but rather from  a 
randomly selected individual of  the previous population. No explicit step 
length information  has to be maintained. Also, the basis vector x'*' does 
not need to be fitness  selected. To increase diversity in the population, 
crossover is introduced, leading to a new parameter vector of  the form: 

for  / = + + 
for  all other /€[l,iV] 

The brackets ( denote the modulo function  with modulus N. The 
index « is a randomly chosen mteger from  the interval [1,A']. i defines 
the number of  parameters that are to be exchanged and is taken from  the 
interval [1,JV]. L is chosen in such a way that the probability 
P{L^V)  = \JPJ'',V>0,  with the crossover probability In 
pseudo-code, the determination of  L can be expressed as: 

L=0 
do 

L=L+1 
while ((rand(0,1 )<p,) and (L<N))  . 

This recombination scheme is different  from  the one defmed  by 
(7.13) and (7.14), The new parameter vector xjf*"  is checked for 
violation of  any constraints. If  it violates one of  the constraints, this 
parameter vector is rejected and the construction of  a new vector is 
repeated. The selection process now has similarity to a tournament 
selection process. If  this resulting design vector yields a better value of 
the objective function  than its predecessor xjf',  the new design replaces 
the old one in the population. If  not, the old vector is retained. This 
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selection scheme is the most distinctive difference  from  the aSA-
evolution strategy introduced in the previous section. Here, fitness  is 
tested against the dkect predecessor, whereas the aSA-strategy constructs 
a fitness  selected set of  parents from  the whole population. Several 
deviations of  this algorithm can be defmed,  depending on the choice of 
the vector to be perturbed, the number and choice of  parameter vectors 
considered for  the computation of  the difference  vector and the crossover 
method (Stom & Price A good choice for  non-critical technical 
problems is a strategy that increases the greediness of  the algorithm by 
using the best parameter vector from  the previous population; 

(7.19) 
or applying mutation to the direct predecessor: 

= xif)  + a . (xit], - xii^) + a . - x ^ ) . (7.20) 
The construction of  the new population member involves in 

any case the crossover scheme as outlined in (7.18). The stop criterion for 
the CTSA scheme is the variation of  the average step length 5 of  the 
selected parents. Such an average step length has to be constructed 
explicitly for  differential  evolution, to serve as a stopping criterion. The 
L2-norm of  the difference  vector between each population member and its 
predecessor is taken. 

The experiments conducted in the scope of  this book have indicated 
that the (D^est/l)-strategy defmed  in (7.19) is to be favoured  for  most 
technical problems. The two remaining strategy parameters can be chosen 
as a = 0.5 and y = 0.9. The influence  of  the population size has been 
found  to be less critical than in ciSA schemes. A minimum of  X> 15 
should be chosen always if  N>2.  However, problems with up to 25 
parameters have been successfully  solved with population sizes between 
30 and 40. Stom & Price advises one to choose X  s: 10*N.  Here, the 
authors have found  that such a large population is not necessary for  the 
problems classified  in section 7.1 . Stom & Price use the algorithm to 
solve artificial  optimisation test problems. 

DE has been applied to the optimisation test problem (7.5), (7.6) as 
well. The results are presented in Fig. 7.13. The strategy using A,=10 is 
successful  in only 68% of  the test runs, while tests with A,=20 succeeded 
in 94% of  the cases within 300 trials. Differential  evolution is well suited 
for  parallel implementation. 

Both evolution strategies can be used in cascade coupled with the 
Hooke and Jeeves algorithm. The optimisation is started using an 
evolution strategy, until a defined  accuracy bound or step size variation is 
reached. Then the Hooke and Jeeves algorithm is invoked for  the fine-
tuning of  the parameter set, assuming that the evolution strategy had 
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approached the global optimum, allowing a local optimiser to take over. 
This reduces the overall number of  function  calls, but might not be 
permitted in the case of  a strongly constrained optimisation problem. 

20 40 m BO 100 120 140 

nuinbcr orfunction  evalualiniii 
Fig. 7.13. Convergence history of  a successful  test using the (DEA)est/l)-strategy 

with A.=10, a=0.5 and p^=0.9. 

7.3.3 Indirect methods 
While in direct search methods the optimisation algorithm samples the 
objective function  directly, in indirect methods the optimisation algorithm 
is applied to an approximation of  the real A'^dimensional feasible  surface. 
A trial on a fitted  surface  is computationally comparatively cheap if  it 
replaces, e.g. a finite  element analysis. 

7.3.3.1 Response surface  methodology and design of  experiments The 
response surface  methodology (RSM) (Box & Draper is such an 
indirect method. The classical RSM is based on first  or second order 
polynomials. The general form  of  a second order response surface  is: 

/ ( x ) = + i ; b,x, + X + t^Kx" (7.21) 
M Jul 

with ¿0, i>i, bij and by the unknown coefficients  that can be found  using the 
method of  least squares and N  the number of  variables (in RSM also 
called factors).  The bjj are called the mteraction coefficients,  whereas the 
bi and A« are referred  to as the coefficients  corresponding to the main 
effects.  The hnmediate advantage of  the computation of  the coefficients 
is the information  they provide about the significance  of  individual 
interactions and main effects.  They provide a tool for  reducing the 
dimensionality of  the problem by excluding non-significant  design 
parameters from  the design optimisation task. This is usually performed 
using first-order  response surfaces.  To fit  any second-order surface,  the 
number of  trials to be computed must be at least equal to the number of 
unknown coefficients. 
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There exists a theory to define  the sample points to consider. This 
can be found  under the name design of  experiments (Box & Draper 
Montgomery Clarke & Kempson Experimental designs should 
ensure an efficient  sampling of  the region of  interest and provide 
information  on the accuracy of  the response in the region. To find  an 
accurate second-order fitting  surface,  three level designs are required 
(three values per parameter range). This leads to 3''-samples to be taken 
for  one surface.  The research on statistical methods advises a number of 
samples that are suitable for  response surface  fitting  and require 
considerably fewer  fiinction  evaluations than the full  3-level factorials 
(Box & Draper Clarke & Kempson Furthermore, they give equal 
precision for  the responses at equal distance from  the centre of  the factor 
space (rotatability property). Such recommended designs are: 

• Central Composite Design (CCD) (Box & Draper 
• Small Composite Design (SCD, special case of  CCD) (Draper 
• Box-Behnken Design (BBD) (Box & Draper 

Taking the axis experiments a distance Ur from  the centre of  the region 
ensures rotatability of  the design. But a , is determined for  CCD as: 

(7.22) 

with Uf  the number of  runs for  the 2''-factorial,  leading for  the N=2  to 
a^ = If  the parameters are normalised and bounded in the interval [-
1,1], this would be outside the feasible  region of  the optimisation task. In 
this case, one takes the outlying axis runs to fit  within the feasible  space 
(Fig. 7.14). 

.De 

Fig. 7.14. Central composite design on normalised parameter space of  dimension 
N=2  consisting of  four  factorial  experiments or runs (D|-D.)), four  axis runs (Dj-

Dg) and one centre run (D9). 
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A CCD is a five-level  design, as it requires the coding of  the 
parameter levels -a,, -1,0, 1 and a^. It should be noticed that a CCD for 
A^2 (with one centre run) appears to be simply a rotation of  the full  3" 
factorial  design (Fig. 7.15a). However, going to higher dimensions, the 
advantage of  2''+2A'H-i7c over 3" experiments becomes obvious. 

In the case of  the objective fimction  defined  by eqns.(7.5) and (7,6), 
Fig. 7.15 and Fig. 7.16 represent the second order response surface 
obtained by fitting  CCD and full  3^-factorial  designs. The CCD is 
constructed by taking the 2" factorial  designs (also called runs), 2N  axial 
or star runs and n^ centre runs (Fig. 7.14). 

The Box-Behnken designs are formed  by combining two-level 
factorials  with incomplete block designs (Box Draper "). In the two-
dimensional case, this would reduce to a two-level factorial  with one 
added centre point, requiring only 5 runs. However, 6 coefficients  have to 
be determined, leaving the least squares problem underdefined.  Box-
Behnken designs are very effective  from  3 factors  upwards. 

- 1 0 . 10 

Fig. 7.15. Second order response surface  using a central composite design 
(CCD). Part a) shows a contour plot of  the response surface  and indicates the 

positions at which samples are taken, while b) visualises Che agreement between 
response surface  and original curve. 

As the response surface  is constructed by a second order 
polynomial, an optimisation algorithm can be derived by applying a four-
step scheme: 
step 1: Construct  a second  order  response surface  using designed 

experiments. 
step 2: Use  a gradient  based  algorithm  to find  the minimum of  the 

response surface. 
step 3: Contract  the active design  space by a defined  factor  around  the 

new optimum. 
step 4: Stop  if  stopping criterion fulfilled  or go back to step 1. 



www.manaraa.com

Fig. 7.16. Second order response surface  based on a fiill  3-leveÌ factorial.  Part a) 
shows a contour plot of  the response surface  and indicates the positions at which 
samples are taken, while b) visualises the agreement between response surface 

and original curve. 

Examination of  Fig. 7.15 and Fig. 7.16 reveals the problem of  the 
response surface  methodology: the actual fit  of  the response surface  can 
be veiy poor. In our case, the minima of  both response surfaces  are closer 
to the global one than the initial centre point. However, this cannot be 
guaranteed, if  muhiple minima reside in different  sized regions of  the 
feasible  domain. Brandiski has examined the usefulness  of  different 
approaches for  multiobjective optimisation in the design of  small 
permanent magnet machines using FE-analysis, such as: 

• Select one main objective and reformulate  the other objectives as 
constraints. 

• Apply an Euclidean distance function  to minimise the distance of 
the global optimum to all single objective optima (this is 
comparable to the idea of  minimising the sum of  the single 
normalised objectives). 

• Apply a desirability function  to each single objective 
(normalising the response to values of  the interval [0,1]) and 
apply a geometric mean to achieve a single scalar value. 

Brandiski concludes that both last-mentioned methods are useful, 
with advantages of  the approach using desirability functions.  The concept 
of  desirability functions  shows similarities to applying the fuzzy  set 
theory to formulate  a multiobjective function.  These approaches do not 
solve the inherent weakness of  the response surface  methodology 
regarding multiminima functions. 

As a conclusion, the response surface  methodology using first  or 
second order polynomials has its advantages if  the objective fimction 
surface  features  a low curvature, probably having a single optimum only. 
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Its success in finding  the global optimum depends on the choice of  the 
limits of  the search region and its contraction scheme. It is interesting, 
however, to examine the main effects  of  the variables and their 
interactions, which can be used to reduce the dimension of  the 
optimisation problem by excluding less significant  design variables or to 
detect unwanted dependencies. 

7.3.3.2 General response surface  methodology The inherent 
problem of  the response surface  methodology to provide "good" fitting 
response surfaces  has led to the introduction of  the general response 
surfece  methodology (GRSM) capable of  finding  the global optimum of  a 
multimodal design space (Alotto et al. ''). The basic idea is the same as 
in the RSM: find  a response surface  fimction  and apply an optimisation 
algorithm to find  the optimum of  this function.  The new feature  of  the 
GRSM is the usage of  multiquadrics (a special form  of  radial basis 
functions)  to achieve a response surface  including multiple minima. Due 
to the possibility of  includmg multiple minima, gradient based 
optimisation algorithms are not permitted. Alotto proposes the use of 
simulated annealing instead. 

GRSM uses approximations of  the objective function  at any point Xj 
of  the form: 

= (7.24) 
j-i 

with Cj the approximation coefficients,  M the number of  experiments and 
a possible radial basis function  A(||x-xj||) chosen to be: 

/i|x-x,||)=^||x-xj+i. (7.25) 
(In geometric terms ||x-XJ|| denotes the distance (radius) between the two 
points in the A'^dimensional space defined  by the vectors x and Xj.  This is 
the origin of  the term radial basis functions.)  The shift  factor  i is a 
parameter defining  the curvature of  the approximated A''-dimensional 
surface.  Alotto presents a statistical method (Bootstrappmg (Alotto et 
al. '') to define  j in a near optimal way. However, experiments have 
shown that choosing s smaller than the average spacmg of  the sample 
points is sufficient  for  most applications. 

If  one substitutes the interpolation condition in (7.24), the 
matrix equation for  the unique coefficients  Cy is obtained: 

Hc = y , (7.26) 
with the coefficients  of  the matrix if^=A(||xrXj||).  The matrix H is a full 
matrix with all diagonal elements zero. As long as the number of  sample 
points is relatively small (up to a few  hundred points) and singularities 
due to duplicate points are avoided, this system can be solved by any 
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pivotation method. The approximation function  fits  exactly all sample 
points. This is in contrast to the response surface  methodology based on 
second order polygons, in which the least square difference  is minimised. 
However, the GRSM does not give any information  on the main and 
interaction effects  as does the RSM, due to the fact  that the coefficients  Cj 
are not related any more to a particular design parameter. 

The attraction of  the classical RSM method is based mainly on the 
statistical methods that provide interpretable fitted  first  or second order 
polynomials. The experimental design developed for  this purpose provide 
the tool to construct these curve fittings  efficiently  for  a well defmed 
polynomial order. The curve fitting  based on radial basis fiinctions  does 
not have such a well-defined  global polynomial order. Alotto et al. ^ 
proposes to combine the multiquadrics approximation with the theory of 
design of  experiments with the goal of  reducing function  calls in 
comparison to the RSM. This can be successful  only if  higher level 
designs are used, resulting in a larger number of  experiments. The same 
number of  experiments as designed for  the RSM will deliver not much 
more information  with the GRSM (Fig. 7.17). 

The advantage of  the multiquadrics approximation (on a 
multimimina objective fimction)  arises with higher factorial  designs (Fig. 
7,18) or by accumulating the sample points in successive zooming steps. 
More detail of  the original curve is present in the approximation, however 
at the expense of  significantly  more sample points. Such a resolution 
cannot be achieved by a global second order polynomial approximation. 

-10 .10 

Fig. 7.17. Multiquadrics response surface  based on a full  S -̂factorial;  a) shows a 
contour plot of  the response surface  and indicates the positions where samples 

are taken, while b) visualises the agreement between response surface  and 
original curve. The result is similar to Fig. 7.16. 

Comparing RSM and GRSM leads to the conclusion that the 
advantage of  GRSM is the more accurate approximation that can be 
achieved when accumulating the sample information  over the course of 
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the optimisation or by higher level factorial  designs. Additionally, the 
approximated surface  passes through all sample points taken. The 
accuracy of  the fit  depends on the number of  sample points if  no prior 
information  about the curvature of  the design space is available. A global 
optimum might still be missed if  the sample grid is chosen unfavourably 
or the successive zooming steps narrow the search region too fast. 
Furthermore, the statistical methods introduced by the design of 
experiments method, to evaluate main and interaction effects,  are mostly 
not applicable to radial basis functions. 

- 1 0 -10 

Fig. 7.18. Muhiquadric approximation based on a full  S -̂factorial  (25 samples); 
a) shows a contour plot of  the response surface  and indicates the positions at 
which samples are taken, while b) visualises the agreement between response 

surface  and original curve. 

7.3.4 Adaptive coupling of  evolution strategy and multiquadrics 
approximation 

Arriving at this point, the question of  a possible combination of  the 
interesting features  of  the presented methods arises. One of  the most 
significant  features  of  the evolution strategies is their ability to converge 
fast  to the region of  interest. The fine  tuning of  the design, on the other 
hand, requires a high number of  evaluations of  the objective function. 
The presented approximation method based on radial basis functions,  on 
the other hand, is able to approximate multiminuna functions  with a high 
accuracy. The accuracy of  the fit  is not determined by a predefined 
spacmg of  the sample grid as in RSM, but rather by sampling "in the right 
place". 

Here, a new approach is introduced, that could be characterised as 
an adaptive coupling of  evolution strategy and multiquadrics 
approximation. The idea is to combine the above-mentioned features  of 
both methods to reduce the overall optimisation time when using 
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computationally expensive function  calls (e.g. FEM analysis). The basic 
steps of  this method are: 
stepl:  Start  an evolution strategy  optimisation using the objective 

function  (direct  search iteration), 
step 2: Construct  a multiquadrics  approximation f(x)  after  each 

iteration,  including  only points within a defined  radius  from  the 
active optimum. This  radius  is a function  of  the active step length, 
ensuring an automatic contraction  of  the active approximation 
space. 

step Compute  the next evolutionary  iteration  using the objective 
function,  but determine  the predicted  value from  the 
approximation f(x)  as well 

step 4: Record  each point within a maximal radius  k -5 from  the active 
optimum and  construct  an updated  approximation f(x).  If  more 
than a defined  ratio of  predicted  experiments are accepted 
function  during  an iteration,  go to step 5, otherwise return to 
step 3. 

step 5: Start  a new evolutionary  iteration,  but now using the 
approximation f(x)  only (indirect  search iteration), 

step 6: Depending  on the acceptance ratio determined  in step 4, continue 
an adaptive  number of  evolutionary  iterations  using the 
approximation f(x)  only, 

step 7; Stop  if  the stopping criterion is fulfilled;  if  not return to step 3 and 
start  sampling on the real objective function  again. 

This algorithm can be applied to any basic evolution strategy. Here, 
it has been employed to the differential  evolution strategy (DE). There 
are three levels of  adaptivity determining the algorithm: 
1. The contraction or zooming of  the approximated region is adaptive to 

the progress of  the optimisation by considering a search space with a 
maximum radius of  kiP.  The factor  k  is empirically chosen as: 

k = k,{a)\Q.Q  (7.27) 
with a the step length factor  of  the evolution strategy. For the DE-
strategy, ^)(a)=(x/0.5, ensuring that the approximation region is wide 
enough for  any progress during the indirect iterations (Fig. 7.21). If 
the step length is rapidly decreased (a=0.5), a smaller approximation 
region is permitted. If  a is larger, the probability that the evolution 
strategy reaches the boundary of  the approximation region in case of 
bad fitting,  is higher. Therefore  the chosen region must be large 
enough. The reason for  this special measure is the bad approximation 
near the boundary of  the active region. The points are determined by 
the evolution strategy instead of  a regular grid as in the RSM or 
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GRSM. This inherits a higher accuracy of  the approximation towards 
the centre of  the search space when using the evolution strategy. At 
the same moment, the shift  factor  s for  the multiquadrics 
approximation eqn.(7.24) is defined  by the average step length 5 in the 
last iteration. 

2. The acceptance of  the approximation is determined based on the 
variance of  the objective function  value of  the iteration underlying the 
active approximation. Accepting predicted experiments with an error 
less than 10% of  the variance has given good results. The error is 
computed by: 

3. 

(7.28) 

with the trial being accepted based on the variance of  the objective 
function  during the last iteration: 

(7.29) 

The number of  mdirect search iterations only depends on the 
acceptance ratio achieved with the active approximation. A higher 
acceptance ratio allows a larger number of  iterations on /(x). Tests 
indicate that a non-linear dependency of  acceptance ratio and number 
of  indirect search iterations W/, is required to ensure a high accuracy of 
the optimisation throughout the approximation period: 

0.5 
•10 + 1 (7.30) 

with «0 the number of  accepted trials per iteration and X  the population 
size. 

Due to the choice of  the DE-strategy, particular attention has to be 
paid to avoid singularity of  the matrix H to solve the approximation 
equation (7.26). Such singularity is caused by duplicate points in the pool 
of  recorded experiments. In DE, this is possible if  the crossover 
probability is high. In this case, an Identical replicate of  a previous 
sample is generated for  the new population. Such points are not taken into 
the sample pool to construct the approximation. The contraction of  the 
approximation region is necessary primarily to reduce the number of 
unknowns in the matrix equation (7.26). 

A further  problem that is inherent to all evolution strategies appears 
when returning from  an approximation step: the selection and mutation 
generates new population members entirely based on members 
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originating from  an approximated function.  Their approximated function 
value is erroneous, probably even lower then the global minimum of  the 
objective fimction  value. The greedy criteria inherent to all evolutionaiy 
algorithms could cause these approximated results to survive. To prevent 
this wrong development, all population members of  the last approximated 
iterations must be mortal, and thus not allowed to survive this first 
iteration using the objective function  evaluation. This causes the new 
method to require slightly more steps than the classical DE alone would 
need to converge to the optimum. However, a large percentage of  these 
steps is taken on the approximated function. 

The performance  of  the method is demonstrated on the test example 
in eqns.(7.5), (7.6). Using the same DE-strategy settings as in section 
7.3.2.3 (Fig. 7.13), only 60 objective function  evaluations are required, 
whereas 80 function  calls are performed  on the approximated function.  In 
Fig. 7.19, the convergence history of  the error is shown. 

direcl Kirch indirMtumh liirec) imlirwt 
10" 

20 40 60 80 100 120 140 
number of  function  cvaluationa 

Fig, 7.19. Convergence of  the error using the new coupled method based on a 
(6/10,0.5,0.9)-DE-strategy. 

In Fig. 7.20 to Fig. 7.21 the approximation surfaces  during the 
progress of  the optimisation are shown. Only 5 multiquadric 
approximations are calculated. After  three iterations (2,3 and 4) the 
approximation is accurate enough for  accepting 80% of  the predicted 
function  values. Four iterations using this approximation follow.  During 
this period, the approximations are naturally not updated. These are 
followed  by two direct search iterations, 10 and 11. After  these two steps, 
the updated approximation is accurate enough to return to the 
approximation again. It must be noted that the probability of  finding  the 
global optimum is entirely dependent on the basic strategy parameters of 
the evolution strategy. However, choosing the population size larger than 
when using the classical DE-strategy offers  the advantage of  finding  a 
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better approximation with less direct, and computationally expensive, 
iterations. 

Fig. 7.20. Updated approximations during the initial direct search iteration 
a) after  2 and b) after  4 iterations of  differential  evolution. The approximations 

span approximately 10 to 20 times this active search region. 

Fig. 7.21. Updated approximations during the fmal  two direct search iterations, 
a) after  10, and b) after  11 iterations of  the differential  evolution algorithm. 

The reason for  choosing the approxbnated region considerably 
larger then the active search region is visible in Fig. 7.21. The 
approximation accuracy outside the active region is poor. If  the evolution 
strategy reached this region during the indirect sampling, the optimisation 
might fail.  Taking the approxhnation region wider than the active 
sampling region of  the evolution strategy, as proposed in eq.(7.27), is 
essential and effectively  prevents failure  of  the method. 

A remarkable feature  of  this proposed algorithm is that the 
efficiency  depends on the curvature of  the objective function.  Tests with 
simple second-order surfaces  have shown reductions of  objective 
function  calls of  up to 80%. 

It must be mentioned at this point that this algorithm performs  well 
for  low dimensional optimisation problems (tested up to 5 on the above 
objective fimction  and other test fiinctions).  Further studies are required 
to improve and extend the algorithm, especially the adaptation criteria, to 
provide equal performance  for  higher dimensional multimodal problems. 
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There are various methods known to solve a system of  linear equations. 
In this section, we will give an overview of  the most important methods 
suitable to solve equation systems obtained from  fmite  element models of 
electromagnetic field  problems with its special properties. We will 
consider a system of  the form 

Ax = b (8,1) 
The matrix A is derived from  a linear elliptic partial differential 

equation (PDE) by using a finite  difference  or finite  element 
discretisation. Most of  the numerical methods that will be discussed in 
this section are applicable to a wide range of  problems. Here, we will 
focus  on the standard example of  Poisson's equation V^x = -q . 

Discretised by the fmite  element method, matrix A will usually be 
extremely sparse. For the present problem, the matrix is also 

• symmetric 
• positive defmite 
• structured. 

These are properties that are not always satisfied  for  more general 
problems. The solution of  linear systems derived from  a PDE can be 
approached from  two different  points of  view; 

• algebraic: 
One forgets  about the nature of  the original problem and deals 
with (8.1) as an abstract matrix equation. Algebraic methods are 
usually very robust. They tend to be sub-optimal, however, but 
easy to apply, and widely available in standard software 
packages. 

• geometric: 
One tries to employ all available knowledge about the mesh and 
the nature of  the PDE and boundary conditions. The system is 
seen as a collection of  discrete finite  element equations, whose 
molecules (stencils) reflect  the connectivity of  the unknowns and 
their relative strengths. Geometric methods are more specialised 
towards one particular class of  problems. They are usually of 
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more limited applicability, often  hard to implement but possibly 
extremely effective. 

To study the theoretical aspects of  the different  equation solver, refer  to 
the literature (Briggs ^^ George & Liu Heath Saad "). In this 
chapter it is intended to give a rough overview of  possible methods and 
with the properties of  the particular algorithms discussed here, the reader 
is enabled to choose an appropriate equation solver for  his class of 
problem. 

8.1 Methods 

The various methods to solve a linear system of  equations are 
traditionally distinguished by direct and iterative methods. 

8.1.1 Direct methods 
• Gaussian elimination (LU/Cholesky factorisation) 

dense factorisation 
=» band factorisation 

sparse factorisation 
• Fast direct solvers (fast  Poisson solvers) 

=> fast  Fourier transform  techniques (FFT) 
cyclic-reduction techniques (CR, FACR) 

Direct methods can be characterised as follows: 
• They produce a solution to the system of  equations in a fmite 

number of  operations. 
• They are mainly of  algebraic nature, and widely applicable under 

extremely weak conditions (e.g. non-singularity). Some direct 
methods are geometric, e.g. most fast  direct solvers. Certain 
methods use the geometric information  reflected  in the matrix 
adjacency graph, e.g., to determine an optimal renumbering of 
the unknowns. 

• The accuracy of  the solution depends on the conditioning of  the 
problem, the numerical stability of  the solver and the precision of 
the computer arithmetic. The accuracy can sometimes be 
improved by an iterative refinement  technique. 

• They usually require large amounts of  memory, and may be very 
time-consuming. 

• They do not require an initial estimate for  the solution. On the 
other hand, they cannot take advantage of  good initial 
approximations, which are sometimes available. 
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• The user has little control over the accuracy of  the solution. In 
some cases, a low accuracy solution suffices.  This is especially 
the case for  PDE problems, where the discretisation error is often 
in the range of  10'̂  (or even worse). Direct methods cannot take 
advantage of  this fact. 

8.1.2 Iterative methods 
• Stationary (or linear) methods with the iterations: 

=> The classical methods: 
• Richardson 
• Jacobi 

Gauss-Seidel 
. SOR/SSOR 

=> PDE-specialised methods: 
• Alternating Direction methods (ADI, LOD) 
. Multigrid (geometric, algebraic,...) 
• Domain decomposition (Schwarz, Schur,...) 

=> Specialised preconditioners; 
Incomplete factorisation  (ILU, IC, ILQ,...) 

• Approximate inverse preconditioners 
Polynomial preconditioners 

• Non-stationaiy (' acceleration') methods with the iterations: 

=> Chebyshev iteration/acceleration 
=> Krylov subspace projection methods 

. Ritz-Galerkin methods: CG, FOM,... 
• Petrov-Galerkin methods: CGN 

Minunum residual methods: GMRES, MINRES, 
ORTHODIR,... 

=> A/AT methods: BCG, QMR,... 
. Hybrid methods: CGS, BiCGSTAB, TFQMR, 

FGMRES,... 

Iterative methods have the following  qualities and drawbacks: 
• Usually, they require little memory: storage for  the nonzero 

matrix elements, the right-hand side, the solution, and perhaps a 
few  additional vectors for  temporary storage. In the geometric 
approach no matrix has to be stored explicitly. The storage for 
the matrix elements can be integrated into the mesh data 
structure. 
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• Often  such methods can be implemented as soon as a procedure 
is available that computes the product of  the matrix with an 
arbitrary vector. Hence, such methods can be applied in cases 
where one does not want to construct the matrix. This occurs, for 
example, when solving non-linear problems with the Newton 
procedure (construction of  Jacobian matrix can be avoided). 

• When optimally tuned, they usually require much less work than 
direct methods. For good performance  they may require accurate 
estimation of  various problem-dependent parameters, such as the 
extreme-eigenvalues of  the discretisation matrix. They may lose 
much of  their potential performance,  or even stop to converge, if 
the parameters are not chosen carefully. 

• They are less robust than direct methods. They often  require 
different  conditions on the matrix to be satisfied  (e.g., symmetry, 
positive definiteness,...). 

• A small perturbation to the system matrix or to its structure may 
have a fatal  effect  on the convergence. In certain cases, one may 
want to resort to two-level iterative schemes, with the classical 
iteration used within a block-level iteration. 

8.2 Computational costs 

Table 8.1 summarises the computational cost of  solving an elliptic 
boundary value problem on a mesh of  size kxk  (2D) or kxkxk  (3D). 
The formulas  are valid for  the Poisson equation on the unit square, 
discretised with second order central differences.  For more complicated 
PDEs, domains, boundary conditions or discretisation schemes some of 
the methods may not be viable options (e.g. FFT based techniques). 

The complexity of  a method is often  written as a function  of  «, 
where n is the order of  the coefficient  matrix. Table 8.2 states the 
exponents of  n in the computational cost of  solving a 2D or 3D elliptic 
problem. Note that the cost of  a dense direct solver increases as while 
multigrid solves a problem at a cost proportional to n. 
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Table 8.1. Computational complexity of  direct and iterative methods for  the 
solution of  the problem on a rectangular mesh with k  mesh-points in every 

direction (Heath p.344). 

method 2D 3D 
dense Cholesky k" ì^ 
Jacobi kUogk log k 
Gauss-Seidel k'log  k là log k 

k^ band Cholesky k' 
là log k 

k^ 
optimal SOR l^logk kUogk 
sparse Cholesky ¡e / conjugate gradient e k' 
optimal SSOR là 'log  k 
preconditioned CG k'^ 
optimal ADI k'lo^k làlo^k 
cyclic reduction l^  log k là log k 
FFT l^  log k là log k 
multigrid V-cycle log k là log k 
FACR ¡e log log k là log log k 
full  multigrid là 

Table 8.2. Exponent of  n (total number of  mesh-points) in the computational 
complexity of  direct and iterative methods applied to the model problem Poisson 

equation (Heath , p.345). 

method 2D 3D 
dense Cholesky 3 3 
band Cholesky 2 2.33 
sparse Cholesky 1.5 2 
conjugate gradient 1.5 2 
preconditioned CG 1.25 1.17 
full  multigrid 1 1 
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The modelling of  a technical device is a process of  neglecting and 
simplifying  in order to describe the physical device in a mathematical 
model. The type and quantity of  the simplifications  influences  the 
accuracy of  the solution. In most cases, a choice has to be made between 
the required accuracy and the numerical size of  the model. 

model 

real device 

Fig. 9.1. Assumptions. 

To define  an appropriate field  problem, the model of  a real 
electromagnetic device, simplifications  have to be made on three levels 
(Fig. 9.1). The recommended predictions concerning the behaviour of  the 
real device must be translated into a model representation. Thus, 
assumptions have to be made concerning different  issues. 

The time dependence of  the problem can be of  the type: 
• static 
• stationary changing 
• periodically changing, or may be 
• transient. 

The problem can be considered geometrically as a 
• 2D problem that is constant in the z-direction, or as an 
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• axially symmetrical problem, only consisting of  a tangential 
component, or as an entire 

• 3D model. 

In the mathematical formulations,  simplifications  are already 
embedded. The most important effects  of  the device must be present in 
the particular potential formulation  for  example such as: 

• non-linearities, 
• hysteresis effects 
• couplings to other field  types 
• couplings of  external circuits,... 

Decisions have to be taken to define  the model and thus to describe 
the real device with a maximum of  accuracy. 

9.1 Modelling with respect to the time 

To choose the appropriate solver module of  a numerical field 
computation software  package the dependence with respect to the time of 
the field  problem has to be considered. Table 9.1 represents a systematic 
for  choosmg an appropriate solver. Time-harmonic or periodic problems 
can be handled with a transient solver as well. The disadvantage of  this 
approach is the huge computational cost. 

Particular attention must be paid to the analysis of  electromagnetic 
devices such as electrical machines. By studying different  modes of 
operation, different  problem types have to be defined. 

In the following  sections the model properties of  the various field 
types are discussed. 

Table 9.1. Selection of  appropriate solver modules. 

electromagnetic fields 
time independent time dependent 

1 = 0 l - . o 
at dt 

no eddy currents considers eddy currents 
static quasi static periodic transient 

(quasi stationaiy) 
static solver time-harmonic transient solver 

solver 
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9.1.1 Static problems 
A static field  is a field  with constant boundary conditions and is excited 
by DC currents or voltages. If  a DC voltage is applied, the DC current 
depends on the voltage only by the DC resistance. No induced effects 
such as eddy currents or induced voltages are present in the model. In a 
static model, the flux  is constant in time and thus the reluctivities are 
constant as well. 

Regarding the static computation as an experiment in the laboratory, 
a probably varying temperature during the experiment can represent a 
'time' dependent factor,  if  the stationary temperature is not reached yet. 
Material properties such as the conductivity of  a field-exciting  conductor 
change with varying temperature and thus the resulting field  as well if  a 
voltage is imposed as excitation. This effect  can be taken into account by 
defining  the material at the particular temperatures in the different 
materials assuming a stationary temperature during the simulation. 

9.1.2 Quasi static problems 
A quasi-static field  is a time-varying field  where no eddy currents are 
involved. The field  solution does not depend on the time-derivative term 
in the differential  equations. It can be regarded as a static field  for  a 
particular instant of  time. The calculation of  the field  is performed  for  a 
certain instant of  time, and therefore  the flux  density and the resulting 
inductances are calculated for  this specific  instant of  time. 

The problem is excited by imposed currents. After  the calculation of 
the coil inductances out of  the solution, the induced voltages can be 
derived. 

If  the field  is driven by imposed voltages, a time-dependent solver 
has to be chosen to fulfil  the voltage law. The applied vohage is the sum 
of  all induced and resistive voltage drops. 

An example of  a quasi-static field  calculation is an instantaneous no-
load calculation of  a device operated by time-dependent currents where 
eddy current effects  can be neglected, such as an induction machine at 
synchronous operation. 

9.1.3 Time-varying problems 
When eddy currents are involved and have to be considered, a time-
derivative term appears in the differential  equations. The varying field 
generates induced voltages and currents. The eddy currents are 
influencing  the field. 

Each form  of  time variation can be modelled either in the time 
domain or in the frequency  domain, A time-stepping solver is called a 
transient solver. When the field  is periodic with one or a limited number 
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of  frequencies,  it is more efficient  to perform  a field  calculation in the 
frequency  domain instead of  in the more convenient time domain. If  only 
one fi'equency  is involved, this solver is called a time-harmonic solver. 

9.U.1 Transient, time domain A transient solver starts from  given 
starting conditions. Depending on actual field  quantities, considering the 
imposed sources and boundary conditions, the differences  of  the field 
quantities are calculated. Adding these differences  to the previous field 
quantities leads to the field  at the nevk* instant of  time. The time 
dependence of  the field  is approximated by a Taylor expansion. 

^ + (9.1) A{t  + At)=A{t)+ 
dt 

9.1.3.2 Frequency domain A solver in the frequency  domain represents 
the field  quantities, applied sources and boundary conditions as a 
summation of  phasors rotating at a given angular frequency  (o . 

A{t)=Ke (9.2) 

From each phasor, the magnitude and the phase, or the real and 
imaginary component is calculated. When non-linear materials are 
considered, the material characteristic varies at given intermediate 
frequencies. 

;i(/) = Re 
inC 
t-u 

(9.3) 

9.1.3.3 Time-harmonic problems In this problem class, all field 
quantities, imposed sources and boundary conditions are assumed to be 
sinusoidal varying with respect to the time. 

^(í)=Re{^/2.I.e^)=^/2•|4|cos(íHí + arg(5;)) . (9.4) 
For all material properties it is assumed to be constant in time. 
A.f\A,\,t)=Jlp,)  . (9.5) 
For non-linear material, an effective  material characteristic is used. 

This characteristic gives a sinusoidal averaged value in terms of  the rms 
value of  the field  quantity. 

Regarding the magnitude of  the magnetic potentials, it can be 
noticed that independent sources will cause a potential peak whereas 
short-connected conductors will try to keep a constant potential. The 
boundary conditions and the external conditions for  the conductors 
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determine the relative magnitudes of  the potentials. The potential is 
smoothly distributed over the regions without current. 

9.2 Geometry modelling 

Devices have a three-dimensional geometry. Very often  it is a 
complicated shape or the device contains moving parts. It is possible to 
reduce the geometrical dimensions to build a FEM model with sufficient 
accuracy. To obtain a model, symmetries in the device can be used or 
transformations  on the geometry can be performed  in order to describe 
the problem with a simpler discretisation. 

device 

moving 
bodies 

Ihree dimensions diificult  gcomctiy infinite  geomeliy 
I 

ajiisolropy 

field  distribution unchanged in some 
direction 

2D 
Cartesian 

axis-
symmetric 

3D 

symmetry: 
• geometry 
. field 

Neumann 

periodicity: 
• geometry 
• field 

binary geometrical 

constant 
geomeliy 

with 
periodic 

field 

motion 

reduction of  the geometrical dimensions boundaiy conditions transformations 

Fig. 9.2. Systematic to reduce the geometrical dimensions of  numerical models. 

9.2.1 Reduction of  the geometrical dimensions 

Two-dimensional Cartesian model: 

If  the device owns the following  properties: 
1. the dimensions of  the geometry compared to those of  its cross-

section are long, 
2. the shape of  the cross-section remains the same along the length 

of  the model, and 
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3. it can be assumed that all flux  lines are present in the cross-
section, 

a two-dimensional Cartesian model (Fig. 9.3) can approximate the 
geometry. Neglecting the end-region effects,  typical examples for  such 
models are cylindrical electrical machines or long inductors. 

i n n n 

Fig. 9.3. Geometrical reduction from  3D to 2D Cartesian. 

Two-dimensional axis-symmetrical model: 

If  the properties of  the device's geometry are true, 
1. the geometry has a cylinder symmetry, and 
2. the field  is axis-symmetrical and is not periodic, 

an axis-symmetrical model (Fig. 9.4) can approximate the geometry of 
the device. 

line ortymmetiy -
Fig. 9.4. Geometrical reduction from  3D to 2D axis-symmetry. 

Entire three-dimensional model: 

If  it is not possible to reduce the geometrical dimension of  the 
model, the field  problem must be solved using a three-dimensional 
model. Fig. 9,5 shows, as an example, the geometry of  an electrostatic 
micro motor. An axis-symmetrical model can not approximate this 
geometry because the field  is periodic due to the voltage excitation at the 
stator electrodes. With known periodicity and employing appropriate 
boundary conditions the 3D model can be reduced. 

9.3 Boundary conditions 

Symmetric geometry and field 
If  at the axis of  symmetry of  a model on both sides the same 

material is defined,  the same sources are in both parts present and the 
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same boundaiy conditions are applied, the field  and geometry are 
symmetrical according to the line. Considering a magnetic field,  the flux 
crosses this line orthogonally. The symmetric part can be omitted and 
replaced by a homogenous Neumann boundary condition (Fig. 9.6). The 
same idea can be followed  in a three-dimensional model (Fig. 9.7). 

Fig. 9.5. Electrostatic micro motor and entire three-dimensional model. 

Fig. 9.6. The Neumann boimdary condition represents a line of  symmetry. 

Periodic geometry and field 

If  the geometry, the applied sources and the boundary conditions are 
periodic with a given spatial period, the field  is also periodic. The 
smallest common symmetry has to be modelled. The spatial connections 
are replaced by binary boundary conditions (Fig. 9.8). In Fig. 9.8 the field 
is periodic with one pole pitch. This is the smallest common symmetry 
with respect to the field  and geometry. 

9.4 Transformations 

Geometric transformations  map real geometrical shapes to arbitrary 
ones. Depending on the type of  differential  equation and on the 
transformation  functions,  the differential  equation can change. 
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Fig. 9.7. Half-symmetry  of  the model of  a magnetic contactor. 

Fig. 9.8. Binary boundary condition applied to reduce the model size to V*  of  the 
entire cross-section. 

Three common reasons for  transforming  the geometry are: 
• to avoid difficulties  with the automated mesh generation or 

refinement, 
• to consider anisotropic materials and 
• to compute the field  of  an infinite  geometry. 
Geometry 
When a model causes difficulties  during automated mesh 

generation, the shape of  the model can be mapped into a simpler one (Fig. 
9.9). The back transformation  is done immediately after  meshing or after 
solving the problem. If  the problem is solved using the arbitrary shapes 
rather than tiie real geometry, the system of  differential  equations of  the 
model undergoes the same transfonnation. 

Fig. 9.9. Transformation  of  the mesh of  a discretised geometry. 



www.manaraa.com

In this chapter, the modelling of  realistic technical devices will be 
demonstrated on a selected set of  examples. All simplifications  applied to 
the models will be motivated and discussed. 

10.1 Electromagnetic and electrostatic devices 

10.1.1 Synchronous machine excited by permanent magnets 
One of  the most popular types of  electrical machine used for  servo drives 
is the permanent magnet-excited synchronous motor. The properties of 
this type of  machine are a high efficiency  and dynamic which combined 
with controlled inverters offer  advantages when compared to other drive 
systems. High-energy permanent magnet material, such as the rare earth 
grades Samarium-Cobalt (SmCo) and Neodymium-Iron-Boron (NdFeB), 
enable various designs that have already been discussed in the literature 
(Fig 10.1, Fig. 10.2). 

magnet material 

Fig. 10.1. Synchronous machine designs with corresponding FEM mesh of  a 6-
pole machine with inset magnets. 

The previous chapters have shown that the appropriate choice of 
model simplifications  depends on the aim of  the analysis. The 
manufacturer  of  the machine might be interested in the local saturation 
level inside the machine, whereas the application engineer requires the 
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lumped parameters to define  the controlled machine's behaviour in the 
dynamic drive system. 

Fig. 10.2. Synchronous machine designs with corresponduig FEM mesh of  a 4-
pole machine with buried magnet system. 

It is assumed here, that the d/q-axis theoiy in the analysis of 
permanent magnet machines is known. Fig. 10.3 shows the phasor 
diagram of  the studied machine. 

« / ty 

A . d-axiS 

Fig, 10.3. Phasor diagram of  the studied permanent magnet machine. 

The analysis of  permanent magnet excited machines using FEM is 
performed  assuming unposed winding currents. Therefore,  end-winding 
reactances do not have to be considered in a FEM model. Such effects 
must be taken into account m analytical models which use the lumped 
parameters that are determined by a FE-analysis. 

In this example, the magnefic  and geometric periodicities allow the 
model to be reduced to one pole pitch. This is achieved by applying 



www.manaraa.com

binaiy constraints (periodic constraints) to connect both sides of  the pole 
structure (Fig. 10.2). 

10.1.1.1 Static analysis The simplest analysis procedure for  this 
machine is a single two-dimensional non-linear magnetostatic analysis. 
The aim is to obtain the torque at a certain instant of  time for  a given 
current. Induced currents due to the relative fnotion  of  stator and rotor are 
neglected. 

Since the stator mmf  is in alignment with the winding phase 
carrying the maximum current, it is convenient to choose the time i = 0 in 
correspondence with the magnetisation axis of  this phase. In this case, the 
initial phase angle p of  the stator current is equal to the electrical angle 
between the stator and rotor mmf.  For the steady state conditions at 
constant load, voltage and frequency,  the electrical angle p remains 
constant. Changing the mitial angle can simulate different  load situations 
p. The following  data can be derived from  the single FEM solution: 

• local field  quantities such as flux  density, magnetic field  strength 
• the torque (using Maxwell stress tensor method) 
• the flux  linkage with the stator winding at this instant of  time 
• stator core iron-loss. 
Iron losses 
The iron losses can be approximated knowing the loss 

characteristics, the losses per weight at different  flux  density levels P(B). 
Such properties are usually available from  the material manufacturer.  The 
total iron loss in the stator for  a given frequency  can be determined by an 
integration over the stator core volume (10.1). 

iPXB)m,dY (10.1) 

In a 2D-problem definition  this simplifies  to a summation over all 
'element losses' of  the core cross section: 

(10.2) 

with 4 the length of  the device, A t̂he area of  the element k and ok the 
mass density of  the material of  element L 

Another possibility for  the estimation of  the losses at different 
frequencies  is provided by: 

1>1 
C, • — + 

' 50 ' 
/ 

W j 
(10.3) 
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with / the synchronous frequency,  cj and C2 the factors  determining the 
loss density components (hysteresis losses, eddy current losses). The 
material manufacturer  must supply these factors.  Estimated values can 
also be found  in the literature. 

Torque 

As the rotor and the stator magnetic field  are in synchronous 
operation, one can assume that the field  pattern is the same for  each 
instant of  time. 

The relative motion of  rotor and stator is not considered. The torque 
consists of  the synchronous torque, the reluctance torque (if  d- and q-axis 
reactance of  the machine are different)  and a cogging component caused 
by the interaction of  rotor magnets and stator slots. The cogging torque 
cannot be analysed by a single solution. It is possible to examine this 
torque component by a small sequence of  steady state problems, where 
the rotor angle and the initial phase angle are changed simultaneously 
(using electrical angles) over one slot pitch. Cogging torque analysis is 
very sensitive to errors in the flux  density computation in the air gap 
region. It is therefore  recommended to ensure a very fine  discretisation 
(Fig. 10.4) or/and using higher order elements in the air gap region. 

Fig. 10.4, Equipotential plot (load condition) and discretisation close to and 
inside the air gap of  a buried magnet synchronous motor. 

The loss computation using the above equations neglects the local 
variation of  the flux  density. The described analysis assumes a constant 
level of  saturation at all times. In reality the saturation is shifted  locally 
with the rotation of  the magnetic field  as well. Resulting higher harmonic 
fields  may considerably increase the iron losses in the stator but are not 
considered in this approach. 

10.1.1.2 Sequential analysis Next to the single analysis, a sequence of 
steady-state analyses is suggested. This approach is not equal to a 
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transient analysis including motion. The type of  analysis remains the 
same, non-linear and magneto static. 

The mesh used in the smgle steady-state analysis remains unchanged 
for  this approach. A sequence of  analyses has to be prepared, in which the 
rotor position and the initial phase angle are varied simultaneously (in 
electrical angles). The current density (according to a defined  load 
situation and instant of  time) is applied to the stator winding regions. To 
generate a sequence of  meshes, the following  tools can, if  available, be 
used: 

• parameterisation of  both geometiy and excitation with automated 
re-meshing of  the model 

• the use of  special air gap elements (elements with overlapping 
shape functions,  sliding boundaries) to avoid the re-meshing of 
the model for  every new rotor position 

• BEM/FEM coupling; the boundary elements are in the air gap, 
and the non-linear ferromagnetic  parts of  the machine are 
modelled by the FEM 

• scripting facilities,  which allow creation of  new models using 
combinations of  commands normally entered by the user. 

As a sequence of  analyses is carried out, it is highly recommended that 
the post-processing is automated as well. 

Induced voltage at no-load operation 

To evaluate the induced winding voltage, generate a sequence of 
models with different  rotor positions and the permanent magnet 
excitation only. The offset  in rotor positions must be chosen smaller than 
the slot pitch to consider the slotting effects.  Compute the flux  linkage 
with each phase at each rotor position using (5.344) or (5.345). From this 
result, the induced voltage in the stationary winding is given by: 

= . (10.4) 
at 

y/(t)  is the flux  linked with the entire phase winding, considering all 
poles. If  the FEM model consists only of  one pole (Fig. 10.2), this must 
be taken into account. The rms value of  the induced voltage Ej may be 
determined by integrating the induced voltage time form  over one 
electrical period. The induced voltage may be compared to a no-load 
generator experiment. The machine is driven by another motor at constant 
speed and the termmal voltage is measured. The induced voltage from  the 
permanent magnets at no-load is different  from  under load conditions. 
The saturation of  the flux  paths is different  in this case. This voltage may 
therefore  not be used to determine the d-axis reactance under load 
conditions. 
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Flux linkage 
The flux  linkage with the stator winding over one electrical period 

under load condition can be evaluated by generating a sequence of 
models which covers half  a period of  the stator current excitation. For the 
computation of  the induced voltage time form  apply (5.344), (5.345) and 
(10.4). The inner torque angle is given by: 

+ (10.5) 

where the phase angle is determined from  the phase difference  between 
the induced voltage and the given current (Fig. 10.3). As illustrated in the 
phasor diagram, the d- and q-axis components of  the induced voltage are 
defined  by: 

(10.6) 
= (10.7) 

where E and / are the effective  values of  voltage and current. Whereas 
obtaining X„G firom  (10.7) is straightforward,  EQ under load condition 
cannot be assumed to be equal to Et at no-load. This assumption leads to 
very inaccurate results. 

Skewing efTects 
The models described above neglect skewing. The influence  of 

skewed stator slots can be considered in the following  way. However, at 
the expense of  higher computational cost, skewing can be taken into 
account by a rather simple concept: 

Analyse a sequence of  models that have the equal stator current 
excitation, but the rotor position is changed over fractions  of  the skewing 
angle. Each model serves as a partial model of  the entire machine with 
length /=//«, with n the number of  models generated per skewing angle. 

Cogging torque 
While the sequence of  models under load conditions is evaluated, 

the torque may be computed as well. The resulting torque time form 
allows the evaluation of  the cogging torque, provided that the steps 
between two models in the sequence are chosen smaller than the slot 
pitch. 

Iron losses 
The actual iron losses depend on the local change of  the flux 

density. The results given by (10.1) and (10.2) assume a single frequent 
sinusoidal change of  the flux  density with respect to the time. The 
realistic local change of  the flux  density however is different.  Whereas 
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the vector of  the flux  density in the tooth head describes an elliptic path 
over one electrical period, the flux  density in the tooth shaft  is always 
parallel with the tooth but changing its direction. This behaviour can be 
examined by reporting local flux  density vectors (describing selected sub-
volumes of  the iron core) over a sequence of  loaded models. The 
hysteresis losses may then be computed by the summation of  the 
prescribed area in the hysteresis characteristic for  all the taken sub-
volumes. 

10.1.1.3 Loading method The above procedure for  the determination of 
the lumped parameter model of  the studied permanent magnet machine is 
computationally expensive. The saturation-dependent value of  the 
induced voltage generated by the magnets (10.6) cannot be determined 
accurately. 

Therefore,  the combination of  the fmite  element method with the 
analytical calculation of  this type of  machine is an interesting concept. 
This method is called the loading method, as all parameters are 
determined under load conditions, considering the mutual influence 
between the direct and the quadrature axis fields. 

Equation (10.6) is underdefined,  as Eq and X^i  are unknown. The 
idea consists of  a linearisation around the operating point at a given load. 
A small change is applied to the load (the stator current), assuming that a 
small change does not influence  the saturation level of  the machine. With 
this assumption the reactance and the induced voltage generated by the 
magnets do not change. A second equation can be obtained from  this 
linear solution: 

EI=E;-COSS;  =E,+I'  cosfi-X^  . (10.8) 
From (10.6) and (10.8), Eo and Xj can be calculated. Combining this 

approach with the sequential approach above, Ei and Si can be derived 
from  the tune form  of  the induced voltage and the given current time 
form.  Two static problems per time instant have to be prepared for  the 
analysis at a given load. The first  one is a non-linear static model, equal 
to the models prepared for  the single steady-state analysis. The accurate 
alignment of  the rotor and stator magnetic axes is veiy important The 
problem is solved and the solution is saved for  later post-processing. At 
the same time, the local values of  the permeability (reluctivity) in all 
elements are saved. A new linear problem is defined,  with a small change 
in the stator current (around 5%). The model is solved using the (fixed) 
permeabilities from  the non-linear solution. 

The combination with the sequence approach increases the 
computational cost. At each instant of  time, two FEM models must be 
solved. However, Ei and <5/ can be determined in a faster  way. Both values 
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can be determined by using a Fourier series of  the vector potential A 
along a contour mside the air gap (near the stator surface). 

2 rri a., cos 
vB 
It 

+ b sin vd 
2t_ 

(10.9) 

with V  the ordinal number of  the harmonic, m the maximum harmonic 
considered (higher than the slot harmonics) and tp the pole pitch in 
degrees. Due to the symmetric design of  the machme, the atrterm 
vanishes. The angular dependency can be transformed  into the time 
domain considering the synchronous speed of  the machme. With the 
alignment of  rotor and stator magnetic axis, the cosine term coefficient  ai 
in (10.9) represents the quantity of  half  the q-axis flux  per pole and unit 
depth. The sine term coefficient  6/ represents the quantity of  half  the d-
axis flux  per pole and unit depth. 

The following  data can be extracted from  both solutions. The 
resultant flux  per pole is given by: 

<i_=2-/ 
The mner torque angle Is: 

= arctan 

(10.10) 

(10.11) 

The effective  value of  the induced voltage can now be evaluated 
using the analytical expression: 

(10.12) 

with^ the synchronous frequency,  A'̂ the number of  series turns per phase 
and ky, the stator winding factor  for  the fundamental  harmonic (product of 
windmg distribution factor  and pitch factor).  It should be noted that <f>̂  is 
a magnetic quantity and represents a magnitude value, but £ is an electric 
quantity representing an effective  value. Skewing can be considered by 
an additional skewing factor  that is multiplied with the winding factor. 

The d-axis reactance and induced voltage from  the magnets under 
load conditions can be determined by applying (10,9) to (10.12) to both 
FEM solutions. Inserting the known values into (10.6) and (10.8) yields 
the value for  Eo and X„d. The leakage reactance of  the end-winding may 
be determined analytically or with a 3D end-winding model. 

The q-axis reactance is determined by usmg (10,7) and adding the 
end-winding leakage reactance. 

The entire input power for  the m-ohase machine is given by: 
P, = m(V, + (1013) 
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with Ri the ohmic resistance of  the stator phase winding at operating 
temperature. 

The electromagnetic power can be obtained by employing: 
+ (10.14) 

and the electromagnetic torque can be calculated by: 
(10.15) 

with p the number of  pole pairs, 
Ohmic losses are considered in the input power (10.13) whereas the 

iron losses are neglected there. They can be estimated using (10.2) and 
added to (10.13). Rotor losses are neglected. 

It must be noted that this method can not be applied for  the overall 
motor characteristics. X̂  and Xq can not be evaluated when U and /, 
respectively are zero. The underlying equations would require a division 
by zero. 

A harmonic analysis can be performed  by introducing harmonic 
ordinal numbers and dependencies (winding factors  for  the harmonics). 
Combining the loading method with the sequencing approach requires a 
different  error discussion as the application of  the loading method alone. 

Combining the loading method and sequencing approach requires 
that the post-processing for  the loading method is applied after  the 
sequence of  solutions is obtained. The computation of  the time form  of 
the induced voltage requires the differentiation  of  the time form  of  the 
linked flux.  Effects  of  induced currents are neglected in the analysis. 

By applying the loading method only, the quantitative influence  of 
the relative motion of  rotor and stator can not be considered because the 
parameters are determined from  one rotor-stator alignment only. 
However, as the slot harmonics are present in the Fourier-series 
expression of  the potential, they will be present as well in the voltage 
time form  derived firom  this expression. The exact value of  the derived 
quantities will be erroneous. 

The linearisation around the working point, which is the underlying 
idea of  this method, imposes an error. Imposmg the permeabilities to the 
state at the given load decreases this error. The changes in the stator 
current for  the linear model should not exceed 10% of  the load current. 

The leakage field  crossing the slots is not considered using the 
introduced approach. It could be examined along contours inside the 
slots, integrating the penetratmg flux  through the contours. This flux  has 
to be subtracted from  the flux  computed with equation (10.10). The 
advantage of  the loading method is its low computational expense when 
compared to the sequence method or to a transient analysis. 
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10.1.1.4 End-winding reactance The end-winding inductance is a 
lumped parameter that cannot be computed by a 2D approach. It is also 
addressed as the end-winding leakage reactance, because the flux  linked 
to this part of  the winding is a leakage field.  Theoretically, it is possible 
to compute the end-winding leakage from  the difference  between the 
measurements and the computed results using the flux  Imkage approach. 
The end-winding leakage inductance can be determined from  the 
comparison of  measurements and two-dimensional finite  element 
computation employing: 

(lOli) 
2C 1 

with 5 the measured and 5, the computed torque angle. As the end-
winding leakage reactances are typically small compared to the main 
reactances (4-10%), this requires a high accuracy of  the measured data. 
Furthermore, for  the comparison of  measurements with computed 
operating points, the excitation current, in particular Id and , are 
computed from  the measured data, resulting in the analysis of  a slightly 
different  operating point. The measurement error is amplified. 

Another possibility is the determination of  the end-winding leakage 
inductance via the stored magnetic energy in a 3D model of  the end-
winding region (Fig. 10.5a). Taking advantage of  symmetries in the 
machine, only one pole (or multiples of  poles) have to be modelled. The 
mductance is determined from  the stored magnetic energy by: 

(10.17) 
3 i ftp 

with rip the number of  poles included in the 3D analysis, 2p the number of 
poles of  the machine. While the post-processing is rather simple, the 
generation of  the 3D model requires considerable interactive time and 
computer resources. 

A Imear, magneto static analysis can be performed,  with only one 
coil system excited. The face  of  the non-modelled iron core towards the 
end section of  the machine is constrained in order to generate the effect  of 
infmite  permeability of  the iron core (Fig. 10.5b) and to reduce the model 
size. The remaining boundaries are symmetry boundaries, and thus the 
flux  is enclosed. This is an imperfect  modelling of  the shielding effect  of 
induced currents in the aluminium or cast iron frame  of  the machine. 
Furthermore, the accuracy depends on the quality of  the discretisation. 

10.1.2 Induction motor 
The fmite  element model used for  the induction motor analysis is usually 
two-dimensional (Fig. 10.6) and describes a part of  the cross-section of 
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the motor. Three-dimensional models are applied to compute particular 
details of  the machine such as the end-winding parameters. 

a) b) 
Fig. 10.5. a) FEM mesh of  the end-wmding of  the studied machine with a double 

layer, chorded winding and b) schematic of  the applied boundary conditions 
using a 2D field  solution on a planar cut in the axial direction. 

stator winding 
rotor ban 
cool dumneL 

Fig. 10.6. Cross section, winding layout and 2D mesh of  the studied 4-pole 
induction motor. 

10.1.2.1 Non-linear time-harmonic problem It is essential for  the 
induction motor analysis to consider both effects,  saturation and eddy 
currents, simultaneously. This requires a computationally expensive 
transient solution or can be approximated using a time-harmonic solution 
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in combination with a modified  magnetisation curve (method of  effective 
reluctivities) or a combination of  static and time-harmonic solutions. 

Effective  reluctivity 
In this method, a time-harmonic solution is recommended. To 

consider the non-linear characteristic of  the ferromagnetic  material, the 
reluctivities are adapted in an iterative process of  successive time-
harmonic solutions. Using Newton iterations yields in a faster  non-linear 
time-harmonic solver; a relaxation approach is possible as well. Here, the 
reluctivities are adapted following  the iteration scheme: 

(̂W) ^ + v'̂ 'a (10.18) 
0 < a ^ 1 is the relaxation factor. 

It is assumed that the magnetic field  strengfli  is sinusoidal varying 
H = H^ sin{iBf)  . To consider the AC excitation of  the magnetic field  and 
thus the time dependent reluctivities, instead of  using the regular BH 
characteristic, the values of  an effective  magnetisation curve is chosen. 

To calculate the effective  characteristic it is assumed that the stored 
magnetic energy over one period of  H  must be equal to the energy by 
using the effective  characteristic. 

. (10.19) 

Another possibility for  determining the effective  magnetisation 
characteristic is to choose the average value over one period. 

v = jjv{t)it  . (10.20) 

Combination of  time-harmonic and static solution 
An alternative approach to determine the element reluctivities for  a 

non-linear time-harmonic problem consists in employing a magneto static 
solution. With the static solution, the saturation of  the operational point is 
approxbnated. To define  the static problem, the exciting currents and 
voltages have to be imposed. Their values can be obtained by a time-
harmonic solution equipped with reluctivities reached in the static 
computation. This approach represents an iterative process (Fig. 10.7). 

10.1.2.2 Problem definition  The time-harmonic problem is defined  by: 
V-(WA)-j(i}aA  = J,  (10.21) 

with = the angular frequency  of  the problem. In an mduction 
machine the stator currents vary with the stator frequency  f  while the 
rotor currents vary with slip frequency: 

f=sf  . (10.22) 
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Fig. 10.7. Combined static and time-hannonic solutions to consider non-linear 
time-hamionic problems. 

Slip frequency 
Using imposed currents at slip frequency  with given phase angles 

can define  the problem 
V. {\^a)-J- iTif,  -aA = J,. (10.23) 
If  a voltage-driven problem with rotor frequency  has to be defined, 

some changes are recommended to obtain a correct solution. The terminal 
voltage has to be transferred  by multiplying by the slip s and the 
conductivity of  the stator winding by the factor  1/i . 

Stator frequency 
Defining  as a function  of  the stator frequency,  the problem is: 
V-{^^A)-j-l7t'f'S<TA  = Ĵ  . (10.24) 
The solutions obtained with rotor slip frequency  f  and conductivity 

cr deliver the same solution as the problem defined  by the stator 
frequency  f  and transferred  conductivity scr. The latter approach is 
preferable  because only one parameter, the rotor conductivity, has to be 
changed. No additional changes are necessary. The rotor resistance 
increases by the decreased conductivity, but the rotor reactance increases 
with the same factor  due to the higher frequency.  The product of 
frequency  and conductivity determines the induced currents. Losses in 
the rotor are a factor  Ms  considered too low. 
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10.1.2.3 External circuits To form  the short-cut loops of  a rotor cage 
winding, a lumped parameter model representing the end-ring 
impedances (Fig. 10.8) has to be coupled to the 2D FEM model. ZB is the 
end-bar impedance and Ẑ  the impedance of  the end-ring. The resulting 
external circuit equations are simultaneously solved with the field 
problem. 

i — ? i 

r A ? i A 
ZB 2f 

t i 

Fig. 10.8. Coupled FEM - external circuit rotor model. 
The parameter of  the external circuit must be calculated analytically 

before  the field  computation or computed by a numerical method. 

10.1.2.3.1 End-ring parameter During load operations, the end-ring 
resistance has the most significant  influence  on the motor behaviour. 
Although the resistance of  a ring-segment Rn is much smaller than the bar 
resistance R̂  (about 1 % of  the bar resistance), its influence  can be up to 
20 - 30 %. 

R. 

2 sin' 
(10.25) 

The equivalent bar resistance is the resistance to be used to 
include the Joule-losses in the ring when calculating the rotor losses due 
to the bar currents. iVj is the number of  rotor bars and p is the number of 
pole pairs. To calculate the ring resistance R̂  of  the entire ring: 

(10.26) 

with 
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K  — 

1 - A 
1 -

D. K 

is applied. D,- is the inner diameter of  the ring and t the thickness. Current 
redistribution in the end-ring is not considered. The end-bar resistance is 
given by: 

'  aS 
(10.28) 

with 5 the cross-section If  the length t^oi the end-bar. To describe the 
influence  of  the end-ring, the inductance: 

(10.29) 

is used. With /B the bar length, /FE is the length of  the iron lamination, T' 

is the pole pitch diameter in the middle of  the ring r' = ̂ ^^, k = 0.18 for 
2p 

p = 1 and k = 0.09 for  p > 1 (Liwschitz-Garik (10.29) expresses the 
influence  of  the end-ring per bar. To compare the analytical formula  with 
the 2D and 3D calculations, expression (10.29) is multiplied by 

^ \ 
P7t 2 sin' 
N, to refer  it to the ring, as done in (10.25) and multiplied by N2 

2 / 
in order to obtain an expression for  the ring inductance LR: 

Ujtr-l •2sin' p7t 

l ^ J 
(10.30) 

The value of  the ring inductance of  the motor under consideration 
using (10.30) is LR = 0.84 NH. 

10.1.2.3.2 2D/3D computed end-region parameters 

Two-dimensional FEM model 

For the 2D fmite  element calculation, a model is made of  the axial 
cross-section of  the motor end-region (Fig. 10,9), A 400 kW traction 
motor is modelled. The accurate modelling of  the cross-section is difficult 
to obtain since it contains a number of  different  materials with different, 
often  unknown and generally anisotropic magnetic properties. Also for 
the correct modelling of  the boundaiy between bearings and frame  or 
bearings and shaft,  questions arise as to whether to model them as good 
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or bad magnetically permeable. To overcome these questions, a number 
of  models are built using different  boundary conditions and materials in 
order to find  the influence  of  each component of  the end-region. 

shaft 

rotor tw 

end-ring 

bearing 

rramc 
line of  symmeliy 

Fig. 10.9. Axial cross-section of  a squirrel-cage induction motor end-region. 
Two extreme situations are considered, one where the boundary of 

the frame,  bearing and shaft  is considered to be a flux  line (Dirichlet 
condition), the other where the boundary is considered perfectly 
magnetically permeable. The finite  element problem is described as axis-
symmetric. A unit current is considered to flow  in the end-ring. The 
problem is defined  as time-harmonic, neglecting saturation. The 
following  figures  (Fig, 10.10, Fig. 10.11) show flux  plots for  some of  the 
models considering the different  boundaiy conditions and material 
properties. 

Fig. 10.10. Only the air around the end-ring is modelled and considered being a 
flux  line. 

The inductance values obtained from  the computations Fig. 10.10 
and Fig. 10.11 are 0.35 fiH  and 0.42 tiH. When all boundaries are 
considered to be magnetically conducting, only the air surrounding the 
ring has to be modelled (Fig. 10.12). 
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Fig. 10.11. Ferromagnetic stator and rotor iron considered. 
b 

Fig. 10.12. Outline of  the fmite  element model to study the magnetically 
conducting situation. 

Line ab in Fig. 10.12 is constrained to be a flux  line. It is necessary 
to have at least one piece of  the boundaiy considered to be a flux  line. If 
not, there is no physical interpretation for  the problem. Examining the 
solutions of  this model, a large variation in the inductance is found  when 
the distance d is varied. The model requires d being equal to half  the core 
length. Only then is ab a realistic flux  line. The inductance value obtained 
in this case is 13.05 |iH. This is a large difference  when compared to the 
other extreme situation where all material boundaries are considered to be 
a flux  line (Fig. 10.10). Therefore,  from  the 2D approach it is not obvious 
which value for  the ring inductance has to be used as lumped parameter 
in the coupled flnite  element-circuit model. 

The 2D approach has some additional drawbacks: 
• The correct excitation of  the ring via the bars can not be 

accounted for  in a 2D axis-symmetric approximation. Therefore, 
the inductance of  the bar-ends outside the iron core are not 
included in the calculations. 
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• By exciting the ring in an axis-symmetric problem definition,  a 
flux  through the shaft  is introduced. Since only the leakage part 
of  the ring-inductance is needed, the coupling with the stator 
end-winding has to be considered. It is obvious that all flux 
through the fi-ame  links both end-ring and end-windings. 
Therefore,  it is part of  the mutual inductance and not part of  the 
leakage components. 

To conclude, separating the mutual and leakage components can be 
performed  only using a three-dimensional model of  the details in the end-
region. 

Three-dimensional FEM model 

stator iron 

Fig. 10.13. Three-dimensional material mesh generated by extrusion in axial 
direction. 

The 3D model is built using an extrusion-based mesh generator. Due 
to symmetiy, only one fourth  of  one end-region has to be modelled. The 
3D model consists of  a material mesh and a set of  coil meshes required 
for  the currents. Both meshes are generated separately allowing a 
different  extrusion direction for  material mesh and coil meshes. It can be 
noticed that a part of  the iron core is modelled as well (Fig. 10.13). 

The stator end-winding is not incorporated m the material mesh. The 
end-winding is modelled as a set of  current-driven coils in air. This is 
feasible  since current redistribution due to skin effect  is negligible in the 
stranded stator end-winding. In the end-ring and the rotor-bars, skin 
effect  cannot be neglected. Therefore,  they are considered in the material 
mesh. Fig. 10.14 shows part of  the material mesh (end-ring and bar-ends). 

Referring  to Fig. 10.14, it is obvious that the generation of  the stator 
end-windmg coils requires a more complex extrusion procedure when 
compared to the modelling of  the material mesh. Therefore,  the building 
of  such complex models using extrusion techniques is only possible if 
material and coil meshes can be built separately. Because the stator-end 
winding is not modelled in the material mesh, the coil meshes have to 
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represent the actual end-wmding geometry as accurately as possible. This 
is not required for  the coil meshes used for  the excitation of  the end-rmg 
and bar-ends. Because the end-rmg and bar-ends are modelled in the 
material mesh, the coil meshes for  exciting them only have to be inside 
the materials and to provide a path for  the current to flow.  The current 
occupies the full  material available considering skin effects. 

ilatnr end-winiliiig 

Fig. 10.14. Material mesh of  end-ring and bar-ends and coil meshes of  the stator 
end-winding. 

Both stator and rotor coils are defmed  as current driven. In the 3D 
model, 9 full  ring-segments and 2 half-segments  are present (Fig. 10.13, 
Fig. 10.14). Therefore,  11 rotor coils are required for  the current 
excitation. Twenty-two current-driven coils represents the stator winding. 
Only 2 end-wmding coils are completely inside the model; the other 20 
coils are cut off  at the boundaries of  the model (Fig. 10.14). Fig. 10.15 
shows two of  the coils used for  the end-winding excitation, the two coils 
which are completely inside the model (coil 1 and coil 2), together with 
three other coils which are cut off  at the boundary of  the model. When 
referring  to the cross-section of  Fig. 10.13, coil 1 occupies the upper half 
of  the first  stator slot (the slot in the upper left  comer) and the lower half 
of  slot 11; coil 2 occupies the upper half  of  the second slot and the lower 
half  of  slot twelve. In the real motor, each of  the stator coils contains four 
turns. The currents for  both rotor and stator coils are obtained from  a two-
dimensional finite  element analysis. 

Five inductances can be calculated: 
LR end-rmg inductance 
Ls end-winding inductance 
M mutual inductance between end-ring and end-winding 
Lor end-ring leakage inductance 
Lo, end-winding leakage inductance 
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Fig. 10.15. Coil meshes representing the end-winding model. 
The inductances are calculated based on the stored energy in the 

model. To determine both leakage components and the mutual 
inductance, three problems have to be solved: one having only the stator 
coils excited, one having only the rotor coils excited and one with both 
stator and rotor coils excited. Considering the stored energy in these 
problems to be W î, Wn,2 and W^, the following  equations can be given: 

w 
ml 2 8 s i 

w — 
m2~2*4"R"R 

(10.31) 
2 8 

ml, , ..' ml., ..' 
üi'^Rs'l'r^Ts^R'l'R 

where 

IR « 
i 

end-ring inductance referred  to the stator, 

ring current, 
ring current referred  to the stator, 

R 
I] stator current, 
Mrs, Mjr mutual mductance between stator end-winding and rotor 

end-ring, 
m number of  phases (m = 3). 

Since the rotor values are referred  to the stator, Mr, = M r̂ = M. The 
value Wm3 is less than Wn,| + Wm2 (the negative sign has to be applied in 
the expression for  W ŝ) if  the flux  caused by the rotor excitations opposes 
the stator flux.  If  the rotor flux  supports the stator flux,  Ŵ a is larger than 
Wmi + Wm2- Under regular conditions, the rotor flux  opposes the stator 
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flux,  resulting in Wn,3 < Wmi + Wn,2. The division by eight or four  in 
(10.31) considers that only one fourth  of  the end-region or one fourth  of 
the end-ring is modelled. 

In the case where only the mutual inductance has to be calculated, it 
is sufficient  to solve two problems, the first  with the rotor flux  opposing 
the stator flux,  and the second with the rotor flux  supporting the stator 
flux.  The difference  of  both stored energy values is only a fimction  of  the 
mutual inductance and the applied currents. Introducing the end-ring 
leakage referred  to the stator, L , the different  inductances can be 

or calculated by: 

s mint ¡2 
1 

L '=W  ^ ^ B mlm^i^^l 

2*4 

B 
MJW  -W  -JV  ^ ^ m3 ffil  ml j 

L =L -M as s 

aB B 

L =i = i 
aB B j'  r 

(10.32) 

1 - M 

B 

Because the three-dimensional calculations performed  are assumed 
to be linear, the number of  calculations is reduced. The calculations with 
only the rotor- or only the stator-coils excited, are performed  only once 
with a unit current. From both calculations, Lj and LR are obtained. Using 
(10.31), the values for  the stored energy W,„| and Wn,2 for  the actual 

I 
currents i| and IR (or i' ) are obtamed. Therefore,  for  each studied slip K 
value, only one additional calculation is required with both rotor and 
stator coils excited. 

Some results of  the calculations of  the different  inductance 
components are collected in Table 10.1. It can be noticed that both 
mutual and leakage components are strongly slip dependent. It can be 
stated that during no-load operation, the fiill  stator end-winding 
inductance Lg represents a leakage reactance. Therefore,  the end-winding 
leakage inductance L̂ jg varies from  0.49 mH (at no-load) to 0.28 mH (at 
standstill). The mutual inductance increases when the slip increases; the 
end-winding leakage inductance and the end-ring leakage inductance 
decrease with the same amount. Furthermore, the end-ring leakage 
referred  to the stator, £ is found  to be of  the same value as the end-

ar 
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winding leakage inductance Lfĵ .  This already is an indication that the 
influence  of  the-end ring leakage is not negligible at all load situations. 

Table 10.1. Calculated inductance components for  different  slip values. 
inductance 

[mH] 
0.34 

slip [%] 
1.42 100 

Ls 0.49 0.49 0.49 
LR 0,46 0.46 0,46 
LR 0,65e'3 0.65e-3 0.65e-3 
M 0.13 0.19 0.21 

LaR 0.33 0.30 0.25 

LaR 0.47e-3 0.42e-3 0.35C-3 

Las 0.36 0.30 0.28 

To predict the behaviour of  the induction machine accurately, 
particular attention to the calculation of  the resistance of  the end-region 
of  the squirrel-cage is recommended. It was assumed to have uniformly 
distributed current in the end-bar and end-ring (10,26). Computations 
using a 3D model result in a higher accuracy, and point out that the 
assumption of  a uniformly  distributed current is not valid (Fig. 10.16). It 
can be noticed that eddy current effects  are present in the parts of  the bars 
located inside the iron core and that a non-nniform  current density 
distribution is computed in the end-rings. 

63-1 
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•34GE+04 

'384E+0'i 
'422E+04 

•4e0E+O4 
•497E+04 

•53SE404 

•5?3E+04 

•ei1E+04 

Fig. 10.16. Current density distribution in the end-ring region at start-up. 
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10.1.3 Electromagnetic siiielding 
Electromagnetic compatibility (EMC) is becoming more and more 
important in the design of  electromagnetic devices. The product must 
satisfy  international and national regulations and standards. The 
developer of  a product has to be aware of  two items: the generation of 
electromagnetic waves by his product, and Ae influence  from  outside 
fields  to his product. This chapter will discuss the second issue, the 
problem of  electromagnetic shielding. Magnetic fields  can be shielded by 
applying two phenomena: 

• high permeable material and/or 
• induced currents. 

Both problems will be discussed here. Studying shielding problems 
with the FEM analysis raises the difficulty  of  a sufficiently  fine 
discretisation of  the considered domain. The skin depth (penetration 
depth) of  magnetic fields  into high permeable or conducting material 
plays an important role in the pre-processing of  the FEM model. The 
choice for  2D or 3D modelling will not be discussed, as this decision is 
based mainly on the model geometry. 

Depending on the type of  shielding (permeable material/eddy 
currents), the penetration depth of  the field  into the structural elements 
must be estimated beforehand.  The estimation of  the penetration depth 
can be performed  by: 

5 = 
1 

(10.33) 
CûpLa 

with the permeability p, conductivity crand the angular frequency®  . If 
the penetration depth can be discretised sufficiently  finely  to allow a 
potential variation that approximates the exponential change of  the field, 
the full  structure can be modelled. Practically, this is the case if  at least 3 
first-order  elements can be defined  in the skin depth. The best choice is a 
FEM analysis using mesh refinement.  However, sometimes it is 
impossible to discretise the model finely  enough to cover large extensions 
of  the modelling domain. For instance, in the case of  a transformer 
shielding, the model dimensions are m the range of  metres, whereas the 
dimensions of  shielding walls are m millimetres. In this case, special 
formulations  may be applied, like thin-iron-plate elements or impedance-
boundary conditions. 

10.1.3.1 Thin iron plate elements If  the thickness of  an iron wall is too 
fine  to be discretised with finite  elements, thin iron plate elements 
provide a way to model such structures. In 2D these are line elements and 
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in 3D tiiey are surface  elements {triangular-shaped using tetrahedrons as 
the 3D fmite  elements). With such elements a material characteristic and 
a thickness is associated. Within the thin-plate element there is no 
component of  magnetic flux  density perpendicular to the plate. In reality 
this will be the case if  a low permeable material such as air surrounds a 
high permeable material such as iron. For the time-vaiying field  analysis, 
the material is assumed to be non-conducting. 

The magnetic shielding of  a monitor serves as an example. The 
analysis is performed  to compare measurements taken in a test rig. This 
test installation employs a set of  Helmholtz coils to generate a 
homogeneous field  of  defined  direction in which the monitor is placed 
(Fig. 10.17). 

m 
. r j m 

Fig. 10.17. Monitor located inside a set of  6 coils generating a homogeneous 
field  of  defined  direction. 

The shape and position of  the set of  coils requires a 3D analysis. The 
extent of  the volume span by the set of  coils is 1 metre. The surrounding 
air is modelled up to 6 metres. The iron-plates are modelling the surface 
of  the monitor housing. They are assumed to have a thickness of  3 mm 
and are surrounded by air. A magnetostatic 3D analysis is performed.  The 
Helmholtz coils are excited with currents producing a homogeneous field 
directed in parallel to the view-axis into the screen of  the monitor. This is 
the worst case, as the screen area cannot be shielded. 

Local field  quantities outside the thin plates can be derived in the 
usual way using the form  fiinctions  of  the element types used. Field 
quantities inside the thin plate elements require a special post-processing 
and the results may be viewed using a surface  mapping technique. 

No field  component perpendicular to the plate is considered inside 
the element. This could introduce large eirors if  the thickness of  the 
material is in the range of  the other dimensions of  the plate, or if  the 
surrounding material's permeability is of  similar value. 
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Fig. 10.18. Magnitude of  the flux  density mside the monitor nearby to the 
shielding. 

10.1.3.2 Impedance boundary condition Whereas the thin-plate 
elements can be used only for  non-conducting, highly permeable 
material, impedance boundary conditions may be used to model 
conductors with a small skin depth. They can be applied only for  time-
harmonic or transient problems. 

The idea is to provide a boundary condition specifying  the ratio of 
the electric to the magnetic field,  at a surface,  to be equal to a complex 
number. It is assumed that the actual distribution of  the field  inside the 
material, which is replaced by this boundary, is not of  interest. Such 
boundary conditions may be used when the skin depth is relatively small 
compared to the size of  the conductor. 

The value of  the impedance to replace the conductor can be 
estimated by: 

(10.34) 
a-S 

with cr the conductivity of  the conductor and S  the skin depth estimated 
with (10.33). This can be performed  automatically by the FEM program, 
if  implemented, or can be provided by the user. 

Local field  quantities inside the model can be derived in the usual 
way by using the form  functions  of  the element types used. Field 
quantities inside the replaced conductor require special post-processing 
and the results may be viewed using a surface  mapping technique. It is 
possible to compute the ohmic losses in the replaced conductor as well. 
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10.1.4 Permanent magnet mini-motors 
The design of  mini motors requires the use of  advanced three-
dimensional field  analysis methods to obtain the field  distribution and 
subsequently the elements of  the equivalent circuit and the torque. 

Very small motors based on the electromagnetic principle are 
excited by high-energy rare earth permanent material such as NdFeB. The 
overall dimensions of  such motor devices are found  in a range of  some 
millimetres. 

10.1.4.1 4-pole motor with block shaped magnets The studied motor 
is from  the axial flux  type, equipped with an etched planar double layer 
winding in a double stator system (Fig. 10.19). In order to avoid cogging 
torques an air gap winding is used. 

- stator iron 
permanent magnet poles 
armature windings 

m  m 
2 pole FEM winding model 

layers layer 4 

Fig. 10.19. Electromagnetic mmi motor with 3D finite  element model and 
armature winding layout. 
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In this type of  application, the supply source is an essential part of 
the system. Due to the non-linearities of  the ferromagnetic  parts of  the 
machine, the link with the time pattern of  the supply voltage cannot be 
simulated using superposition. The motor is operated as a brushless DC 
motor. Constant DC currents are switched to the armature winding in the 
stator according to the signals of  a position-sensing system equipped with 
hall sensors. The rotor is constructed with NdFeB permanent magnet 
blocks of  the dimension 2x2x2 mm. The use of  high-energy permanent 
magnet material can lead to significantly  improved efficiency  and 
performance  of  small electrical machuies. The high remanence and 
coercivity at room temperature makes this material particularly attractive 
for  this type of  machine. However, the sensitivity of  the coercivity of 
NdFeB to high temperatures calls for  increased attention to the thermal 
aspects of  a design. Integrated designs using NdFeB magnets are cost-
effective  for  fractional  and sub-firactional  horse power motors. 

In the design stage, the target is to obtain reliable results predicting 
the operational behaviour of  this device. Macroscopic parameters, 
reactances and reluctances, describe the technical physical properties of 
the machine. Due to the presence of  ferromagnetic  materials, the 
calculations have to account for  the non-linearities. 

To extract the parameters for  a simplified  equivalent circuit, the 
inductance is found  from  the stored field  energy after  replacing the 
permanent magnets by air: 

(10-35) 

The torque is found  from  the virtual work: 

r = ̂  (,0.36) 

The evaluation of  the torque as a function  of  the rotor position is 
performed  by a sequential analysis. Once the device-dependent 
parameters are determined, the equivalent circuit is modelled and in 
combmation with the characteristic values of  the supplying energy source 
(Fig. 10.20), the overall system is modelled, sunulated and analysed. 

The computed flux  density distribution (Fig. 10.21) shows that the 
ferromagnetic  material of  this design is not saturated. A motor 
construction with less material could be designed in a following  design 
approach. 
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Fig. 10.20. Switching scheme for  the stator winding currents of  phase 1 and 2. 

Fig. 10.21. Magnetic flux  density at no-load operation. 

10.1.4.2 Mini disc-type motor The motor in this example is an axial 
field  disc-type motor excited by permanent magnets. The outer diameter 
is about 45 mm, axial length about 15 mm (Fig. 10.22). The stator back-
iron consists of  two discs of  ferromagnetic  material. The armature 
winding is placed on the two stator sides. 

The required torque recommends a multi-layer winding in order to 
realise a sufficiently  high current layer. Therefore,  each winding consists 
of  four  layers. On each stator side, eight windings are installed and 
connected to form  two phases. The rotor consists of  a thm disc 
constructed with a sintered NdFeB material magnetised in the axial 
direction in a multipolo arrangement (Fig. 10.23). 
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Fig. 10.22. Main dimensions of  the mini disc-type motor. 

1.amiature winding layers 
2. pemianent magnet poles 
3. stator back iron 
4.shaft 

Fig. 10.23. Three-dimensional finite  element model of  the disc-type motor. 
The supplying current source operates in the same way as 

introduced for  the permanent motor (Fig. 10.19). To compute the induced 
voltage, , the flux  generated by the magnets and coupled with one 
winding, which is not carrying current, is computed by a sequential 
approach as a fimction  of  the rotor position (Fig. 10.24). The torque can 
be computed for  each instant in time by integrating it along the current-
canying conductors of  the winding (Fig. 10.25) and superimposing the 
torque generated by the single winding phases. 
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Fig. 10.24. Computed voltage induced in one phase at a rotor speed of  1000 rpm. 
reaulLing torque 

=; lorque per phase 

Fig. 10.25, Torque characteristics for  the disc-type motor (winding coils operated 
with 0.5 A). 

10.1.5 Design of  electrostatic micro motors 
Scaling analysis shows that as size is reduced, electrostatic designs 
become advantageous over the electromagnetic versions that dominate at 
dimensions starting in the millimetre range. The electrostatic micro 
motors studied here are based on the principal of  variable capacitance. 
The operation principle is very simple. A voltage on the stator electrodes 
induces a charge on a conducting rotor and in response the rotor moves to 
minimise the electrostatic field  energy. 

The most inexpensive fabrication  technology of  electrostatic micro 
machines is a thin film  process for  planar structures. Therefore,  such 
rotating actuators are extremely flat  and the generated forces  are very 
low. The motor with its outer dimensions is shown in Fig. 10.26. Fig. 
10,27 shows its corresponding three-dimensional finite  element model. In 
this case of  geometrical symmetry, the mesh is extruded in an angular 
direction to build up the three-dimensional structure (Fig. 10.27b). 
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Fig. 10.26. Detailed construction and outer dimensions of  the studied axial field 
electrostatic micro motor. 

Fig. 10.27. a) Axial field  electrostatic micro motor model and b) the base planes 
rotated in angular extrusion dhection. 

Radial field  type machines are also feasible.  When the same height 
of  the machine is considered, the surface  that contributes to the 
interaction between stator and rotor is much smaller. However, the 
problem is that only very small forces  can be generated. Using a radial 
type of  interaction and the LIGA production technique, allowing the 
fabrication  of  higher microstructures, results in higher torque values. This 
technique is very expensive. More uiexpensive alternatives are developed 
but are not capable of  supplying the same depth of  the rotor. Fig. 10.28 
shows the three-dimensional finite  element model of  a radial field  micro 
motor. 

However, both types of  motor can be analysed in an analogue way. 
The electrostatic energy stored in the model is evaluated and serves as 
data to obtain the parameters of  an equivalent circuit. 

(10.37) 
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Fig. 10.28. Radial field  electrostatic micro motor with FEM model. 
The use of  this equivalent circuit model enables calculation of  the 

forces  of  the motor operated with various voltage cycles without new 
computationally expensive FEM analyses. 

The desired parameters in the equivalent circuit are the values C of 
the capacity between the single components of  the geometiy as indicated 
in Fig. 10.29. The equivalent circuit in Fig. 10.29 consists of  12 
capacitances, twice the number of  stator electrodes. The capacitance of 
each capacitor varies with the rotor position. 

Fig. 10.29. Defmition  of  the elements of  the equivalent circuit for  a 6/8 pole 
radial field  electrostatic micro motor. 

To avoid axial forces  on the rotor shaft,  the motor must be excited 
symmetrically. Fig. 10.30 shows the possible symmetric excitations of  a 
motor with 6 stator electrodes. The grey electrodes are excited by 1 V and 
the rotor electrodes are set to ground potential 0 V. 
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Fig. 10.30. Possible symmetrical excitation sequence to perform  one revolution 
of  the rotor. 

By applying different  excitation cycles to the equivalent circuit, the 
torque characteristics versus rotor position can be calculated. Using the 
principles of  virtual work, the torque is found  by partial differentiating  of 
energy with respect to the angle of  rotation: 

T  = . (10.38) 
33 

Fig. 10.31. Potential solution of  the radial cross-section of  the axial field  motor. 

Fig. 10.32. Potential solution of  the radial field  type micro motor. 
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10.2 Coupled thermo-electromagnetic problems 

Coupled thermo-electromagnetic problems have to be considered in the 
simulation of  realistic electromechanical devices and electroheat 
installations. To handle this type of  problem, an interface  program to co-
ordinate the fmite  element method simulations and to perform 
intermediate calculations, such as heat source evaluation, numerical 
relaxation and mesh transitions, is recommended. 

The material data used to define  FEM problems are often  strongly 
dependent on the temperature. Since material data parameters occur in 
many coefficients  of  the electromagnetic field  equations, the calculation 
of  the electrical and/or the magnetic field  coupled to the thermal field  is 
recommended. The heat generation of  electromagnetic nature results in a 
coupling of  the source term of  the right-hand side of  the thermal equation. 
The combined problem in the electromagnetic and the thermal domain is 
generally described by Helmholtz-like differential  equations. The 
discretisation yields two or more sets of  algebraic equations that have to 
be coupled numerically: the electric field  and/or magnetic field  together 
with the thermal FEM-equations. Each of  them can be extended with an 
algebraic set of  circuit equations. These include coupling terms as well, 
e.g. in resistances. 

The discretisations, on which the computations for  the single field 
problem are performed,  do not have to be identical. Sometimes, only a 
sub-mesh has a physical meaning: e.g. air carrying a magnetic leakage 
flux  is replaced by a convection constraint in the thermal model; the solid 
parts can be identical. Even the mesh in areas with more than one 
continuous degree of  freedom  can be discretised with different 
overlapping geometrical meshes and/or element types. Therefore,  mesh 
transition operations have to be defined.  The groups of  algebraic 
equations can be solved with a strong coupled or with a cascade coupled 
strategy. 

The first  approach consists of  the generation of  a large system of 
non-linear equations with both types of  FEM-equations, associated with 
the coupling terms. The mesh transitions and heat source terms have to be 
written as linearised algebraic functions.  This large linear system may 
have unfavourable  numerical properties due to the different  nature of  the 
underlying physical equations, resulting in a difficult  to solve problem. 

ITie second method (Fig. 10.33) defines  an iterative process in 
which both sets of  equations are solved sequentially. The mesh transitions 
and heat source calculations are necessary intermediate steps and do not 
necessarily have to be linearised. This approach can be interpreted as a 
"decomposition" of  the different  fields. 
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Fig. 10.33. General flow  chart of  the cascade algorithm. 

The following  groups distinguish the operations necessaiy for  the 
iterations: 

• Updating of  material properties: The various temperature 
dependent material parameters are updated whenever the 
algorithm requires it. Therefore,  various characteristics must be 
implemented. These involve electrical conductivities, thermal 
conductivities, permanent magnet material properties, thermal 
conductivities, loss coefficients  and characteristics. 

• External process handling: Calls to execute external FEM-solvers 
and mesh generators. 

• Iteration control: Process commands to control the flow  of  the 
iterative loop and evaluation of  stopping criteria. These criteria 
can be based on absolute or relative residuals or solution 
differences  between two consecutive weighted solutions of  the 
total problem or a sub-problem respectively. 

Fig. 10.34. Projection of  element related values. 
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• Data transition commands: When different  meshes are used, 
mechanisms are necessary to project the field  variables onto 
another mesh. Basically, this is a per-node interpolation of  the 
solution. 

The projection of  the values associated with the element's surface  or 
volume, e.g. a calculated loss density, is not straightforward.  If  the 
meshes do not differ  very much, the position of  the centre of  gravity of 
the element to be filled  in, can be located in the other mesh (black dot 
Fig. 10.34). The corresponding element-related value can then be copied. 
If  the meshes differ  much or if  a higher order of  accuracy is desired, an 
average can be generated by means of  a numerical integration using 
Gauss points (additional white dots Fig. 10.34). 

It can be stated that a large difference  between the meshes is not 
advantageous. It would mean that the related physical domains would 
not be calculated with a corresponding accuracy. However, mesh 
differences  can arise due to local mesh quality reasons. 

• Adaptive relaxation of  the convergence process: In order to 
prevent the non-linear iteration process from  divergence and to 
accelerate the convergence, an appropriate relaxation method 
must be applied. The damping factor  can be predefined 
according to a certain fiinction  of  the iteration number or 
adaptively, based on a minimisation of  the total or partial 
(weighted) residual vector. 

• Heat sources calculation: For the area covered by every 
meaningful  element, a heat source density can be calculated based 
on the electromagnetic solution (Table 10.2). 

Table 10.2. Overview of  main heat sources in electromagnetic problems. 
heat source occurs in formula application 
joule losses 

iron losses 

dielectric losses 

exlemal heat 
sources & sinks 

problems with 
electrical current 
(perpendicular to, 
or in a plane) 
non-sUtic 
magnetic field 
problems 
non-static electric 
field  problems 

various 

y conductors in machines, 
q — —Si- eddy cuirents in 

cr induction healing 

f,  - ( r /"'̂ Rf̂ '  magnetic materials with 
ahysleresisloop 

q, ,=a)(£  ian pa^citive heating, losses 
IM  " ' V r ™ ' ^ / " in isolating malerials 

look-up table,... e.g. venlilalion, cooling 
channels, friction 
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10.2.1 Three-phase high voltage power cable 
In this section, the results of  a three-phase power cable simulation with 
respect to the coupled magnetic/electrostatic/thermal field  problem are 
shown. 

Three-phase power cables exist in many variations and types, 
differing  in conductor shape, material choice, conductor arrangement etc. 
They consist mainly of  the following  parts, in which several of  the 
previously mentioned loss mechanisms can be found: 

• conductor, usually made of  copper, suffering  from  joule losses 
caused by the high current 

• insulation layers and filling  materials, loaded with electric fields 
and therefore  subject to dielectric losses 

Fig. 10.35. Geometry of  the three-phase high voltage power cable. 
I grounded lead sheath around the primary isolation, shielding 

the electric field;  due to hs relative low conductance, internal 
eddy currents can develop 
mechanical protections (armour), sometimes made of  magnetic 
steel and therefore  subject to hysteresis and eddy current losses 

The presence of  both electrically related and magnetically related 
heat sources leads to a combined model consisting of  three field  types. 
Electric, magnetic and thermal fields  that have to be calculated over a 
complete or a partial cross-section of  the cable and its surrounding. 



www.manaraa.com

The electrical field,  described by the scalar potential V,  is only of 
interest in the isolation part loaded with an electrical field.  Therefore, 
only a mesh covering this region is required to solve the electrostatic field 
equations. 

The time-harmonic magnetic field  is calculated on a larger mesh, 
since it is only partly shielded by the mechanical protection and thus a 
leakage field  can exist outside the model. This leakage flux  is considered 
by the region surrounding the cable geometry; the far  field  is modelled by 
a Kelvin transformed  mesh. The losses consist of  joule losses in the 
conducting regions, such as the lead, steel and copper and possible iron 
losses inside the steel. 

The thermal field  is represented by the temperature potential 
distribution T.  The static thermal field  region consists of  the cable with 
the surrounding soil in which it is buried. From a certain distance, the 
ground is modelled by a Kelvin transformation  and therefore  assumed to 
be infinitely  deep. It is assumed that the ground surface  is cooled by 
convection. 

eleclric field applied: mBBnetic field 

ground " 
potential 

; losses ; ^ 
'A • '•^j:  i 

ihennal field 

Fig. 10.36. Problem meshes used to compute the different  physical fields. 
The element-wise over the previous meshes (electro-, magneto-

static) calculated losses are projected onto the thermal mesh. The 
extracted temperatures are used to update the material properties in the 
other fields.  Basically the dielectric loss factor  and the thermal 
conductivity depend on temperature, but this is an effect  of  minor 
importance in this example problem. The largest parameter changes are 
encountered in the conductivity of  the copper. 
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To solve the entire problem, a three-domain mesh must be constructed 
(Fig. 10.36). The mesh for  the electric field  contains 9943 first  order 
triangular elements, the magnetic field  mesh 15378 and the thermal field 
mesh 15560 elements. 

The results of  this threefold-coupled  problem are collected in the 
following  figures. 

O 

a) Soluliofi  of  (he electric field. 

c) Temperatale distribution. 

Fig. 10.37. Entire solution of  the threefold  coupled problem. 
The temperatiure in the centre of  a conductor amounts 84''C, which 

corresponds to reported measurements (Van Dommelen & Germay 
Table 10.3 shows the computed values of  the heat sources and their 
location within the models. 

Table 10.3. Overview of  main heat sources in electromagnetic problems. 
location loss mechanism value [W/m'l 
copper conductors ohmic 5,97.10* 
conductor isolation dielectric 1,17.10' 
inter-conductor filling dielectric 2,55.10' 
material 
mechanical protection ohmic + iron 1.23.10"̂  

10.2.2 Coupled simulation for  electrical machines 
An efficient  simulation algorithm for  the coupled magnetic-thermal field 
of  electric machines is proposed. This algorithm uses a combined FEM-
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circuit approach in both magnetic and thermal field  regions. FEM 
calculations are performed  to compute magnetic and thermal phenomena 
in a xy 2D Cartesian cross-section, whereas a circuit approach is applied 
to consider thermal phenomena in the z direction (Fig. 10.38). 

...-•-::•—I 

i I 
A/ 
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Ii 

// 
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Fig. 10.38. Principle of  the combined thermal FEM-circuit-model; the resistances 
in the model represent a part of  the symmetry of  the axial thermal phenomena. 

(The cross-links to the next slot are not shown.) 
The computations m the magnetic and the thermal domain result in 

four  sets of  equations: the magnetic FEM-equations, electrical circuit 
equations, the thermal FEM-equations and thermal circuit equations. The 
entire approach to solve the entire problem is a computationally efficient 
method. The simulation of  a 15 kW TEFC (totally enclosed and fan-
cooled) four-pole  induction machine demonstrates the coupled approach. 

In general, the heat transport perpendicular to the axis of  cylindrical 
electrical machines can be modelled with a high accuracy. Less is known 
about the effects  influencing  the heat flow  in the axial direction. For 
example, the flow  of  the cooling fluids  in the end-regions is very 
complex. Therefore,  3D-calculations should be coupled to a 
'computational fluid  dynamics' simulation, asking for  huge 
computational efforts. 

The circuit approach offers  the advantages that the heat transfer  in 
the axial direction is modelled in a straightforward  way, using thermal 
resistances. However, the determination of  their values is troublesome 
and asks for  experience and measurements. 

Different  methods to solve the overall problem are possible: 
• A cascade iteration algorithm in which the systems are solved in 

successive steps. This results in a poor convergence. On the other 
hand loss calculation algorithms can be introduced in a simple 
way. 

• The solution of  a numerically strong coupled large system of 
equations in which the four  sub-sets together with the coupling 
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terms are assembled. This may result in a very ill-conditioned 
system of  equations. Therefore,  particular equation solvers are 
recommended to obtain a fast  convergence. 

• An intermediate approach is possible by placing the FEM-
equations together with their corresponding circuit equations in 
one system of  equations describing a single physical domain. 
These 'physical' sub-systems are then coupled in a cascade-like 
iteration. This method has a moderate rate of  convergence, but 
requires less memory. 

The time-harmonic magnetic model is coupled with circuit 
equations describing the effect  of  the end-windings, the bars outside the 
rotor and the end-rings as already introduced. The thermal model consists 
of  a FEM component, including equivalent convection coefficients  to 
account for  ribs and equivalent thermal conductivities for  areas such as 
the air gap and the slots. This thermal FEM model is extended by a circuit 
approach. The circuit equations represent the thermal paths connecting 
shaft,  yokes, slots and the frame  through thermal resistances and 
represent the internal end-region in air, the end-windings, end-rings, 
bearings and end-caps of  the machine. The resulting temperature 
distribution of  this coupled approach is plotted m Fig. 10.39. The 
isothermal lines in the shaft  are caused by heat flowing  through the shaft, 
a path that is described by a thermal network chcuit equation. 

Fig. 10.39. Isothermal lines of  the temperature distribution. 

10.2.2.1 Modelling of  thermal contact resistances In the 
electromagnetic-thermal coupled modelling of  electromagnetic devices, 
the thermal simulation poses some extra difficuhies,  not present in the 
electromagnetic field. 

Examples are the mixed boundary conditions as found  in convection 
(linear coefficient)  or radiation (non-linear coefficient).  These require 
extra adjustments of  the finite-element  matrix and right-hand-side. 
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A second particularity is the presence of  thermal contact resistances, 
although it can be noted that electrical contact resistances exist as well 
when electrical current m the plane of  the sunulation is modelled. They 
are a particular problem encountered in thermal FEM models of  the 
electromagnetic devices. Examples for  this thermal contact interface  are: 

• contact frame-stator  yoke 
• contact stator winding-slot 
• contact rotor winding/bar-slot 
• contact rotor yoke-shaft 
• glue layer between a permanent magnet and the yoke. 

Several approaches are known to model such contact resistances. 
Corrections to the thermal conductivities of  the conductor materials can 
be applied to consider this effect.  This approach causes an error in the 
internal temperature distribution of  the conducting region, but the average 
temperature is calculated accurately. The temperature distribution is used 
to update material data of  the related sub-problems. Despite the extra 
computational costs of  averaging, this approach has the advantage that 
there is an obvious geometrical relation between the elements of  regions 
in the different  sub-problems. This is advantageous for  projection 
methods. 

An extra equivalent contact layer of  elements can be inserted, filled 
with an equivalent contact material. In order to obtain an acceptable 
aspect ratio of  the fmite  elements, a sufficient  number of  elements have to 
be generated inside the contact layer and the adjacent regions. Due to the 
high number of  slots m an electrical machine and the small size of  the 
contact layer, this yields a significant  growth of  the numerical model and 
hence computation time. The number of  elements can be reduced if  the 
layer is enlarged, but this reduces the size of  the conductor and the tooth, 
and so no clear geometrical relationship exists between the thermal and 
the magnetic sub-problem. If  the same model, with the reduced 
conductor, were to be used for  the magnetic sub-problem, an error would 
be made in the leakage flux  and the joule heat calculation. 

Another possibility is to duplicate the nodes lying on the edges 
marking the border between the conducting region and the iron. Extra 
terms in the equations modelling the contact are inserted to define  the 
thermal relationship of  the nodes. The standard meshing algorithms have 
to be adapted to generate the extra nodes. Moreover, these extra 
equations change the numerical properties of  the matrix system to be 
solved. 

The third proposed approach will be outlined. Here, the mesh 
generator must be able to double the nodes lying on the contact resistance 
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(Fig. 10.40). This must be performed  in a consistent way to prevent any 
'crossing' of  the edges of  the contact resistance. Standard mesh 
generators need to be extended with appropriate search and data 
management structures. 

ii 
Fig. 10.40. Two elements at the thermal contact resistance uiterface. 

Within the FEM code, the standard element matrices are generated 
(the right-hand-side remains unaltered). The following  extra matrix, 
suited for  fast  order elements, is added to the system. The exact values of 
the coefficients  are obtained using the Galerkin approach. 
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(10.39) 

with he the contact resistance coefficient  and the length of  the 
adjacent element edges. 

A computed example using this approach is shown in Fig. 10.41. A 
partial thermal model of  an induction machine is shown. The example 
consists of  one stator winding slot and a rotor bar. The above relation 
models the contacts between the slots and the iron core. This leads to a 
set of  isothermal lines appearing to be discontinuous. This is not true 
since many isothermal lines lie in the temperature jump inside the thermal 
contact resistance. 
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Fig. 10.41. Computed temperature distribution using the thermal contact 
resistances in a slot arrangement of  an electrical machine example. 

10.3 Numerical optimisation 

10.3.1 Shape optimisation for  small DC motor 
The application of  the methods used is demonstrated by the optimisation 
of  a small DC motor. For the optimisation a (4/4, 12) evolution strategy 
combined with the simulated annealing algorithm is used. 

The objective is to minimise the overall material expenditure, 
determined by permanent magnet-, copper- and iron volume subject to a 
given torque of  the example motor. 

"fmu  J Z(x) = ]ot 
The use of 

penalty ~ 

penalty 
penalty term in the form: 

Vinili-'' 
10' 

T^T- 1 

(10.40) 

(10.41) 

allows the evaluation of  the objective fiinction  even if  the torque 
constraint is violated. 

The torque is computed by integrating the Maxwell stress tensor in 
the air gap region. Flux density dependent rotor iron losses were taken 
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into account at a rated speed of  200 rpm and subtracted from  tlie air gap 
torque to form  the resultmg output torque. 

The overall dimensions and the slot geometry of  the DC motor are 
described by 15 free  design parameters. The free  parameters are the n/2 
edges of  the polygon describing the rotor slot contour and the outer 
dimensions of  rotor and stator as indicated in Fig. 10.42, The motor 
consists of  a stator back iron with a 2-pole' Ferrite permanent magnet 
system and a rotor with six slots. 

1. suior back iron 
2. permanent magnet 
3. rotor iron 
4. winding slot 

Fig. 10.42. Geometrical definitions  and design variables of  the DC motor. 

The necessary two-dimensional field  computation to evaluate the 
quality function,  to compute the torque of  the machine, is performed  by 
standard two-dimensional fmite  element analysis. To ensure controlled 
accuracy, adaptive mesh generation is applied until a given error bound is 
fulfilled. 

An initial mesh is generated from  any geometry represented by non-
overlapping polygons. Fig. 10.43 shows an initial and adaptive generated 
mesh for  the example DC motor. 

Fig. 10.43. a) initial- and b) adaptively refmed  mesh. 
Constraints result from  fabrication  conditions. The change of  shape 

from  a sub-optunal mitial geometry to the final  shape of  the motor can be 
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taken from  Fig. 10.44. It can be noticed that the iron parts of  the initial 
geometry are over dimensioned. The actual torque of  this configuration 
was approximately 25% lower than the desired value . The optimised 
motor holds the torque recommended, which is achieved mainly by 
enlarging the winding copper volume by about 20%. The most significant 
change from  start to fmal  geometry can be seen in the halving of  the iron 
volume. Consequently the iron parts are highly saturated, especially the 
teeth regions. In comparison to this, a test optimisation with neglected 
rotor iron loss results in a 10% smaller rotor diameter. Unfortunately,  the 
permanent magnet material is brittle, which limits the minimum magnet 
height. The magnet volume decreases slightly. Along optimisation the 
overall volume off  the motor was reduced by 38%. The rate of 
convergence is plotted in Fig. 10.45. 

1: 3.766 S: 8.265 20: g.OOe flO:  2.0LI 
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Fig. 10.44. Motor shapes during optimisation (iteration step: quality). 
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Fig. 10.45. Quality versus iteration counts. 
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10.3.2 Pole shape optimisation of  a synchronous generator 
The aim is to optunise the pole shape of  a 3-phase synchronous generator. 
The quality function  is evaluated by a simplified  analytical approach. At 
no load of  the generator typically the generated voltage is desired to be 
sinusoidal. The tune dependent sinusoidal output voltage requires a 
position dependent sinusoidal distributed flux  distribution in the air gap. 
With DC field  exciting current and a concentrated shaded pole, the 
sinusoidal field  excitation is reached by influencing  the air gap 
reluctance. The air gap length is a function  of  the circumferential 
angle . 

Due to symmetry only half  a pole pitch is used for  the evaluation of 
the air gap flux  density distribution. The followmg  assumptions were 
made: 

• the stator of  the machine is spotless 
• saturation of  ferromagnetic  parts is neglected 
• inside the iron parts it should be p^-i'co, i.e. flux  lines are 

perpendicular at the iron boundaries 
• the flux  Imes are approximated by chcular arcs 
• pole flux  leakage is neglected 
• flux  density in the interpolar gap is not present. 

Fig. 10.46. Geometry and co-ordinate system. 

Fig. 10.46 shows the geometry and co-ordinate system of  the used 
configuration.  The pole shape of  half  a pole pitch is approximated with n 
parts of  a polygon. Between the sample of  the polygon, linear 
interpolation of  the flux  density is applied. The objective variables are the 
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y-co-ordinates y i , y n of  the samples of  the polygon. The air gap length 
> 0 restricts the optimisation problem. 

>-,^0 with i = l(l)rt 
With the objective function: 

B. -> mm. (10.42) 

Bp denotes the fundamental  of  the flux  density distribution and the 
B̂  are the harmonics. Determination of  the harmonics is performed  by a 
fast  Fourier transformation  (FFT). With Ampere's law on the path of 
integration as indicated in Fig. 10.46 the flux  density of  the position of 
interest is evaluated with: 

(10.43) 

Fig. 10.47 shows the initial and optimised pole shape. The variations 
of  the pole contour for  temporary iteration steps can be taken out from 
Fig. 10.48. 

Fig. 10.47. Pole shape and flux  density; a) rectangle pole and b) optimised pole 
shape. 
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Fig. 10.48. Pole shape and quality of  iteration step k. 
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Table 10,4. Quality function  during optimisation. 
=30.39% e) Zl" =29.62% 

b) ZO' =28.04% f)  Z"' =27.26% 
c) =25.08% g) Ẑ ^ =24.59% 
d) =23.53% h) Z'"̂ ' =23,26% 

10.3.3 Optimisation of  an actuator using a magnetic equivalent 
circuit model 

The MEC method and the mentioned combined numerical optimisation 
algorithm will be applied for  the example. The task is to optimise the 
shape of  a brushless DC motor. Fig. 10.50 shows the initial shape of  the 
electromagnetic device. The used complete equivalent magnetic circuit 
can be taken out of  the introductory section about numerical techniques. 

The armature wmdmg is fixed  to closed stator slots and the rotor is 
axially assembled out of  permanent magnet rings. The magnet material 
used is a plastic bonded NdFeB grade (MQl). The objective is to 
minimise the material costs of  the construction under the assumption of 
the same torque production as the initial construction. Objective variables 
can be taken from  Fig. 10.49. 

Material costs are estimated and set to 0.7 US$/kg for  the 
lamination, 4.1 tJS$/kg for  the used copper volume of  the armature 
winding and 110 US$M/kg for  the used magnet material. The resulting 
shape of  the motor can be seen in Fig. 10.51. 

Using a quality function  with K as the sum of  all material costs, the 
start value of  quality is approximately 42 US$. After  the optimisation, the 
overall material costs decreases to 11 US$. Fig. 10.51 shows the 
reduction of  the cost intensive permanent magnet volume. Due to the 
expensive armature winding compared to the lamination cost, wide stator 
teeth can be noticed. Maximum flux  density of  1,04 T is enumerated in 
the teeth. 

Fig. 10.49. Objective variables. 
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1 2 9 4 
Fig. 10.50. Initial geometry. 

1 permanent magnet; 2 stator yoke; 3 area of  armature winding; 4 shaft. 

lp,= 37,3 mm 

Fig. 10.51. Optimised shape of  the DC actuator. 

10.3.4 Design of  a lifting  magnet 
FEM method and the numerical optimisation algorithms are applied to 
the shape optimisation of  a lifting  magnet. The objective is the reduction 
of  the weight of  the device at constant lifting  force.  There are no 
additional geometrical constraints. The problem is formulated  with 10 
free  parameters to be optimised as indicated in Fig. 10.52, 

Obviously, the problem has to be defined  as a non-linear 
magneto-static field  problem. During optimisation an accuracy of  at least 
1% was required for  the FEM field  calculation. The size of  the mesh was 
restricted to 4000 elements. The optimisation method used was the 
evolution strategy (4/3, 12). 
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Fig. 10.52. Lifting  magnet with initial proportions. Arrows indicate the 
admissible variation of  design parameters. 

This method offers  a compromise between reliability and 
performance.  A plus-strategy widi a smaller number of  children and 
parents would result in faster  convergence. The initial and adaptive 
generated fmal  mesh for  the FEM calculation can be seen in Fig. 10.53. 

Fig. 10.53. a) Initial and b) adaptive generated fmal  mesh for  the optimised 
geometry. 

The resulting field  plot of  the optimised lifting  magnet is shown m 
Fig. 10.54. The optunisation resulted in a reduction of  weight of 
approximately 6% in comparison to the initial geometry. 

The dependence of  step length on the iteration steps is illustrated in 
Fig. 10.55. It serves as convergence and stopping criterion. About 40 
iterations, each involving 12 objective function  evaluations, seem to be 
sufficient  for  an geometrical accm-acy of  1 mm. Fig. 10.55 shows that the 
most significant  reduction in weight is achieved during the first  30 
iterations. The improvement in the following  iterations is less than Wo. 
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Fig. 10.54. Field distribution of  the optimised lilting magnet. 
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Fig. 10.55. Step length and weight of  the lifting  magnet versus iteration count 
duu-ing optimisation. 
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A postscript on software  development at Leuven 

Without the constant lively enthusiasm for  the subjects of  field 
computations that exists within the research group at Katholieke 
Universiteit Leuven it would have been impossible to collect this amount 
of  knowledge and expertise in such a short time. Here we would like to 
present the work that is done within our research group in the frame  of 
field  computations and simulations. This book can serve as some thanks to 
such enthusiastic co-workers and partly as a document of  their work 
during their Ph.D. studies in the electrical engineering department at the 
Katholieke Universiteit in Leuven. 

A university is a place of  education. Besides some particular people, 
students are constantly coming to join the group to work scientifically  and 
are leaving the group to use their acquired knowledge in industry or 
elsewhere. 

At the beginning of  1996 the enthusiasts, Herbert, Ronny, Uwe, 
Johan D., Johan F., Peter, Koen, Geoffrey,  Hans and us, started the 
development of  some special FEM solver and software  modules to be 
coupled to commercial packages. This development has now grown into 
an independent software  package for  two-dimensional field  problems, 
including coupled field  effects,  enhanced force  computation, and 
automated numerical optimisation, with hs own name 0LYMP0S-2D. 

The most important solvers for  two-dimensional field  problems are 
present in this package, such as static, time-harmonic, in-plane and 
transient (magnetic, thermal, electric, mechanical strain/stress,...). Today 
the group manages more than half  a million lines of  software  code. 
Various developed programs, post-processor tools and graphical interfaces 
support the single FEM solver. Parameterisation tools, scripting, graphical 
coil definition  modules back up users such as scientific  visitors and 
students. Further software  development and scientific  studies will focus 
on the coupling of  the effects  of  the different  field  types, the automated 
optimisation of  entire electromagnetic systems, investigations in the 
representation of  non-linear materials will of  course work towards a three-
dimensional package. Therefore,  this book can serve as an intermediate 
report of  the scientific  field  computation activities inside the Electrical 
Energy group of  the Katholieke Universiteit Leuven. 
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cascade algorithm 277 
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coil meshes 192,260 
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computation methods 50 
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conjugate gradient 149,233 
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deterministic methods 202 
dielectric losses 278 
differential  equation 19 
differential  evolution .215 
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Dirichlet 99 
Dirichlet boundary condition. 20 
disc type motor 60 
discretisation for  the FDM 73 
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equation 78 
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DOF 83 
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domain decomposition 231 
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EMC..: 265 
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error bound 163 
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FEM 50, 52,75, 79 
FEM couplmg of  two fields 

190 
FEM discretisation 80 
FEM models 8,10 
FEM procedure 4 



www.manaraa.com

ferromagnetic  9 
ferromagnetic  circuit 20 
ferromagnetic  materials 89 
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finite  difference  method 73 
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finite  element method 75 
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general response surface 

methodology 222 
geometrical dimensions 239 
geometiy modelling 239 
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Lawson's Delaunay algorithm 
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lumped parameter 14 
M 
machine theoiy 192 
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non-conducting regions 43 
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numerical simulation 2 
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optimisation 52,197 
optimisation problems......... 198 

oscillations 155 
overlapping domains 194 
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parallel implementation 217 
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Pareto 201 
partial differential  equations ..50 
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periodic boundary condition ..39 
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synunetrical model 240 
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Software  for  Electrical 
Engineering Analysis and 
Design IV 
Editors: A. KONRAD, University of 
Toronto, Canada and CA. BREBBIA, 
Wessex Institute of  Technology, UK. 

This book contains the papers 
presented at the fourth  in a series of 
conferences  that bring together 
engineers concerned with the 
techniques of  formulating  and building 
software  for  electrical engineering 
applications. The emphasis is user-
oriented, focusing  on methods for 
fitting  software  to engineering 
applications. 

A very broad range of  software  topics, 
including numerical algorithms, data 
structures and even aspects of 
programming methodology and user 
interface  design, are covered. The 
application areas represented are 
equally diverse. 
ISBN 1-85312-684-5 May 1999 
apx 250pp apx S221.00 

Look for  more information 
about WITPress  on the internet: 

http://www.  yvitpress.com 

Simulation and Design of 
Microsystems and 
Microstructures II 
Editors: R.A. ADEY, Wessex Institute 
of  Technology, UK and R. A. RENAUD, 
Swiss Federal Institute of  Technology, 
Switzerland. 

Establishing how the design and 
production of  microstructures can be 
greatly enhanced by using simulation 
technology, this book contains the 
proceedings of  the Second 
International Conference  on Simulation 
and Design of  Microsystems and 
Microstructures held September 1997. 

Partial Contents: Design; Simulation 
and Analysis; Optimisation; Material 
Modelling; Fabrication and 
Manufacturing  Processes; Correlation 
with Experimentation; Integration; 
CAD; Measurement Problems; 
Processes (i.e. Etching). 
ISBN: 1-85312-501-6 1997 
296pp £95.00/US$l 45.00 

All  prices correct  al time of  going to press. 
Ail books are available  from  your 

bookseller  or in case of  dijpcuify  direct 
from  the Publisher. 
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Sensor Dynamics 
O.P. SKOBELEV, IBT International, 
Samara, Russia. 

The dynamics of  sensors is a difTicult 
area for  students to grasp. For technical 
and economic reasons it is often 
impossible for  them to gain this 
knowledge in laboratories. These 
packages are designed to overcome this 
problem by enabling students to 
experiment and leam using a PC. Each 
package consists of  a manual, 
containing theory and exercises, and 
an accompanying disk providing a 
means for  experimenting with models 
of  sensors. All of  the software  can be 
run on IBM PCs and compatibles using 
Windows 3.x. 

Volume 1 - Pressure Sensor 
Dynamics 
ISBN: 1-85312-433-8,1-56252-348-1 
(US, Canada, Mexico) 1996 
£95.00/US$146.00 

Volume 2 - Resistive Temperature 
Sensor Dynamics 
ISBN: 1-85312^34-6; 1-56252-349-X 
(US, Canada, Mexico) 1996 
£95.00/US$ 146.00 

Volume 3 - Acceleration, Vibration 
and Shock Sensor Dynamics 
ISBN: 1-85312-435^; 1-56252-350-3 
(US, Canada, Mexico) 1996 
£95.00/US$146.00 

Special OITer! Save almost 20% 
when you buy all three packages 
together. 
SET WITH DISKETTE ISBN: 
1-85312-432-X; 1-56252-347-3 1996 
E30.00/USS353.00 

Software  for  Electrical 
Engineering Analysis and 
Design III 
Editor: P.P. SILVESTER, McGill 
University, Canada. 

The proceedings of  the Third 
International Conference  on Software 
for  Electrical Engmeertag Analysis and 
Design. Papers are divided under the 
following  headings: Parallel 
Computation; Control and Simulation; 
Circuits and Systems; Antennas and 
Electromagnetics; Magnetics and 
Machines; Methods and Formulations; 
Power Simulation; Microelectronics; 
and Software  Design and Techniques. 
ISBN; 1-8S312-395-1 1996 
528pp fl47.00/US$221.00 
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